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Abstract: To improve the control performance and robustness of fractional order PID (FOPID) controller 

for the uncertainty model, a tuning method for FOPID controller based on probabilistic robustness is 

proposed in this paper. Based on the Monte Carlo simulation, a probabilistic robustness index is 

formulated to represent the controller sensitivity to the uncertainty model. Stability boundaries of FOPID 

is depicted to provide the search space, in which the optimal group of parameters are selected based on 

the probabilistic robustness index. The procedure of the proposed method is designed to obtain the 

optimal controller parameters for the uncertainty model. Numerical examples are performed to verify the 

efficacy of the proposed method, and simulation results show that the proposed method has better 

performance, stronger robustness and ability of handling uncertainties. 

Keywords: Factional order PID controller, Probabilistic robustness, Stability boundaries, Uncertainty 

model, Monte Carlo simulation. 



1. INTRODUCTION 

Fractional order systems (FOS) have attracted many 

attentions in the past decades, because the fractional calculus 

can descript the real-word phenomena more rigorously. FOS 

are often obtained by system identification approaches and 

show more dynamic information of a complicated system 

than integer-order systems, such as heat solid model (Petráš 

et al. 2002), gas turbine (Nataraj et al. 2010), perturbed 

pressurized heavy water reactor (Lamba et al. 2017) and lead-

acid battery (Sabatier et al. 2010). 

Fractional order proportional–integral–derivative (FOPID) 

controller is naturally suitable to control FOS, which is 

considered as a generalization of the classical PID controller. 

FOPID has more parameters to tune which means greater 

flexibility. Many tuning methods have been proposed to 

design FOPID. Multi-objective iterative optimization 

algorithms and other iterative optimization algorithms were 

used to optimize the parameters of FOPID (Zamani et al. 

2017; Wu et al. 2016), one or more evaluation indexes for the 

normal model (NM) are defined and then used for parameter 

optimization. Internal model control (IMC) is also developed 

for FOPID (Bettayeb et al. 2014), and the design procedure 

of IMC-FOPID is similar to the classical PID. Other FOPID 

design procedures are proposed to meet the control 

specifications such as phase margin specification, gain 

crossover frequency, et al. (Badri et al. 2013; Luo et al. 2010). 

Other modified FOPID is also proposed to enhance the 

control performance such as fuzzy FOPID, adaptive FOPID, 

two-degree of freedom FOPID controllers (Sharma et al. 

2014; Delavari et al. 2012). These modified FOPID 

controllers are all designed based on the NM and then 

checked whether the robustness constraint is satisfied. 

Randomized algorithms for the uncertain systems control has 

been studied for decades and a lot of achievements have been 

obtained (Calafiore et al. 2014). As one of randomized 

algorithms, probabilistic robustness is a practical and 

powerful tool to design the controller and analyse the 

robustness considering the uncertainty model, so a tuning 

method based on probabilistic robustness for PID controller 

was developed which could satisfy the control requirements 

such as overshoot, setting time and showed an obvious 

advantage in the robustness (Wang et al. 2011). To the best 

of authors’ known, the tuning method based on probabilistic 

robustness for FOPID has not been reported. So a new tuning 

method for FOPID controller based on probabilistic 

robustness is proposed in this paper, which combines the NM 

and the uncertainty model during the tuning process. The NM 

could offer stability boundaries of FOPID and the parameter 

optimization is developed based on the uncertainty model. 

This paper comprises of 6 sections and the rest of the paper is 

organized as follows. Section 2 formulates the description of 

the uncertainty model and the realization of FOPID. The 

stability boundaries of FOPID parameters are analyzed in 

section 3. The tuning procedure based on probabilistic 

robustness is designed for FOPID in section 4. In section 5, 

two simulation examples illustrate the effectiveness of the 

proposed method. Finally, section 6 offers concluding 

remarks.  

2. PROBLEM FORMULATION 

2.1  Parameter Uncertainties for FOS 

Much simplification for modelling and the nonlinearity of the 

real-word phenomena are inevitable exists for FOS, which is 

called uncertainties of FOS. Uncertainties of FOS could be 

considered as the parameter perturbation in a large space 

when dynamic characteristics are far from the nominal 

working condition. And this problem formulation could be 

depicted as following. 
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where  1,2,ia i n ,  1,2,i i n  ,  1,2,kb k m  and 

 1,2,k k m   are the coefficients and the order of 

denominator, the coefficients and the order of numerator, 

respectively. It should be noted that the highest order of 

denominator is no smaller than the highest order of 

numerator, and the order of denominator and numerator can 

be nonnegative integer or non-integer. Due to the existence of 

parameter uncertainties for FOS, define  , , ,i i k ka b q  as the 

random vector of parameter uncertainties throughout the 

parameter space Q according to the probability density 

function of pr. 

The aforementioned controller design methods for FOPID in 

section 1 are based on the NM and can have good control 

performance for the nominal working condition. However, 

the control performance would deteriorate when the model 

varies far from the nominal working condition even though 

FOS is designed with robustness constraints. So a tuning 

method considering the parameter uncertainties of FOPID is 

proposed to design FOPID and still has satisfactory control 

performance even the model varies far from the nominal 

working condition. 

2.2  The Realization of FOPID 

The classical PID controller is the most widely used 

controller currently, which is described in the form 

  i
PID p d

K
G s K K s

s
                              (2) 

FOPID controller is a generalization of the classical PID 

controller and has a similar structure with the classical PID 

controller which can be described as 

  i
c p d

k
G s k k s

s




                                 (3) 

where   and   can take any values within the range  0,2 . 

Considering the hardware implementations difficulties of 

fractional order calculus operator s  in MATLAB & 

Simulink, an integer order transfer function is proposed to 

approximate it by using the recursive distribution of poles 

and zeros in a particular frequency band by Oustaloup 

(Oustaloup et al. 2000). In this paper, an improved Oustaloup 

filter introduced by Xue is used (Xue et al. 2006), which is 

accurate enough for the order between 0 and 2. The 

approximate transfer function can be depicted by the 

following equation: 
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where  ,b h   is the fitting frequency band, b and p are 

adjustable parameters and the valve of them is 10 and 9 

respectively. M is the order of approximation, zeroes 
k  and 

poles '

k are described as 

 

 

2 1 /

'

2 1 /

=

=

k M

h

k b

b

k M

h

k b

b






 




 



 

 

  
  
  

  

 
 

                      (5) 

3. THE STABILITY BOUNDARIES OF FOPID 

To simplify the stability boundaries analysis, the NM of FOS 

is represented as 

         j

pG j r e a jb
 

                      (6) 

And it should be noted that fractional order operator s  is 

depicted by the mathematical identity: 
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                   (8) 

The closed loop transfer function of the whole system 

combining the NM and FOPID is obtained 

 
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Hence, the characteristic equation of the whole system 

becomes 

     ; , , , , 1 =0p i d c pW s k k k G s G s                  (10) 

Substitute (3) and (6) into (10) and separate the real and 

imaginary parts, the functions of stability boundaries can be 

obtained 
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When  , 
dk ,   and   are fixed, the stability boundaries of 

FOPID are obtained by solving (11) and repeating the 

calculation for a set of 
dk -values,  -values and  -values 

gives the whole stability boundaries. 

The expressions of 
pk  and 

ik  can be obtained by solving (11) 

as following 
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Now the procedure of the stability boundaries calculation is 

summarized as follows: 

i)  The NM and the value of 
dk ,   and   are fixed. 

ii)  The stability boundaries of FOPID can be obtained by 

solving the expressions (12) and (13) with   varies from   

to + . 

iii)  The whole stability boundaries are obtained by repeating 

the calculation for a set of 
dk -values,  -values and  -values. 

4. THE TUNING METHOD FOR FOPID BASED ON 

PROBABILISTIC ROBUSTNESS 

Define parameters of FOPID controller as  , , , ,p i dd k k k    

which should be located in the stability boundaries in (12) 

and (13). To measure the design requirements on stability and 

performance quantitatively, a binary indicator function 
iI  is 

defined as following 

0    design requirements are not satisfied

1     design requirements are satisfied
iI


 


         (14) 

When parameters d are fixed and the uncertainties of FOS are 

defined, the closed system performance can be evaluated by 

examining whether the system satisfies the design 

requirements or not. The probability P that FOPID controller 

satisfies design requirements can be described as the integral 

of the binary indicator function in the whole parameter space 

       ,i p c r
Q

P d I G G d p d    q q q                   (15) 

By using this probabilistic framework in (15), control indices 

can be examined. In this paper, the settling time 
st  and the 

overshoot   are chosen as control indices which are 

conflicted and can weigh the control performance well. Now 

the probabilistic robustness index is defined as 

      1 2, ,J d fcn P d P d                         (16) 

where fcn is defined as the weights for each binary indicator. 

Considering the integral in (15) is difficult to calculate 

analytically in most cases, a method to obtain the estimate of 

probability P and the probabilistic robustness index J based 

on Monte Carlo simulation is depicted as following 
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P I G G d
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ˆ ˆ ˆ, ,J d fcn P d P d                       (18) 

The estimate P̂  and Ĵ  can approach respectively to the real 

probability P and J when N  . However, the value of N 

cannot be infinity in practice and a finite N results in 

estimation errors. A minimum N can be calculated based on 

Massart Inequality which guarantees a certain confidence 

level to a risk parameter (Chen et al. 2003) 

2

2
2 1 1 ln

3 3
N

 

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 

  
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  
                       (19) 

where   denotes the given risk parameter, the confidence 

level is defined as 1   and  0,1  . Such a sample size can 

ensure  / 1r xP P K N       with =1xP  . K/N is the 

estimated probability, K is the value of the design 

requirements satisfaction in N samples and the confidence 

interval is  / ,   /K N K N   . 

The goal of tuning FOPID controller based on probabilistic 

robustness is to find the optimal controller parameters *d  that 

obtains the maximum value of  *J d  with the parameter 

uncertainties throughout the parameter space. Considering 

the difficulty of the non-convex for the parameters 

optimization, genetic algorithms (GA) are adopted to 

optimize the parameters of FOPID controller which has good 

global convergence ability and a high computational 

efficiency (Haupt et al. 2004).  

It should be noted that the minimum value of N for Monte 

Carlo simulation is still too large for GA when the parameters 

of Massart Inequality are set. So a small value of N is set for 

the parameters optimization then a big enough value of N 

determined by (19) is used to test the probability of design 

requirements. 

5. NUMERICAL EXAMPLES 

In this section, FOPID controllers tuned by the proposed 

method are applied to two FOS with actual physical meaning. 

The definition of the probabilistic robustness index is varied 

based on design requirements, which can be weight 

coefficient, linear function and nonlinear function, etc. 

Considering the conflicts between the settling time and 

overshoot, a linear function with weight coefficient is defined 

in this paper 

  0.8 0.2tsJ d P P                             (20) 

where 
tsP  and P  denote the binary indicator functions of the 

closed system satisfies the design requirements of the setting 

time st  and overshoot  , respectively. It should be noted 

that the setting time st  is decided by the desired dynamic 

characteristics of the model and the control performance, and 

the selection of the setting time is a comprehensive result.  

Here are some parameter settings: The number of Monte 

Carlo simulation for each individual, the number of initial 

population and the maximum number of evolutionary 

iterations are set 500, 100 and 30, respectively. The 
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parameters of Massart Inequality are set =0.01 , =0.01  

and =0.2 , the value of N is selected as 24495. 

5.1  Pressurized Heavy Water Reactor Model 

A pressurized heavy water reactor (PHWR) model is 

identified by Das (Das et al. 2011). The parameter space Q is 

set by covering ± 50% around the nominated value of the 

coefficients and ± 20% around the order of PHWR model. 

This model with parameter uncertainties are depicted as 

 
 

  1 2

1 1

1

1 2 3

p

N s b
G s

D s s a s a
 

 
 

                    (21) 

where  1 761.44735,2284.3420b  ,  2 4.0972,12.2916a  , 

 3 3.8842,11.6526a  ,  1 1.4680,2.7262  , 

 2 0.7025,1.3047  . The parameters of the NM of the PHWR 

model are 
1=1522.89468b , 

2 =8.1944a , 
3 =7.7684a , 

1= 2.0971  

and 
2 =1.0036 . 

The design requirements are set 7st s , 5%   and the 

parameters of FOPID controller can be tuned by the proposed 

method. The proposed FOPID controller (PRFOPID) is 

obtained  

  1.6519

0.58411

0.1671
0.1997 0.1170cG s s

s
                (22) 

The response of PRFOPID is compared to interval fractional-

order proportional integral derivative (INFOPID) controller 

(Lamba et al. 2017), fractional-order internal model 

proportional integral derivative (FOIMCPID) controller 

(Sagar et al. 2016) and fractional-order proportional integral 

(FOPI) controller (Bhase et al. 2014). Note that these 

parameters of those controllers are tuned well by the 

researchers in relevant references and they are listed in Table 

1. 

Table 1.  Parameters of different controllers for the 

PHWR model 

Controllers Tuning parameters 

INFOPID 
=0.011pk , =0.03ik , =0.05dk , 

=0.9 , =0.95  

FOIMCPID 
=0.0108pk , =0.0102ik , =0.0013dk , 

=1.0036 , =1.0935  

FOPI 
=0.0016323pk , =0.001506ik , 

=1.004  

The step response for the NM of PHWR is shown in Fig. 1, 

and PRFOPID and INFOPID have the fastest response speed 

than other controllers while PRFOPID has a smaller 

overshoot than INFOPID for the NM of PHWR. 

Monte Carlo simulation is carried out for N times with the 

uncertainty model in the whole parameter space, the indices 

of the integral of time multiply absolute error (ITAE), the 

integral of squared error (ISE), the integral of absolute error 

(IAE), 
st  and   are all recorded in the whole 20 s. The 

results of 
st  and   for each perturbed PHWR model with 

different controllers are shown in Fig. 2 and the ranges of 

ITAE, ISE and IAE are listed in Table 2. 

 

Fig. 1. The step response for the NM of PHWR with different 

controllers. 

 
(a)                                        (b) 

 
(c)                                       (d) 

Fig. 2. The records for each perturbed PHWR model with 

different controllers ((a): PRFOPID, (b): INFOPID, (c): 

FOIMCPID, (d): FOPI). 

Table 2.  The ranges of ITAE, ISE and IAE for each 

perturbed PHWR model with different controllers 

 ITAE ISE IAE 

PRFOPID 
[0.2613, 

2.1711] 

[0.0053, 

0.0204] 

[0.0498, 

0.3656] 

INFOPID 
[0.4814, 

3.3611] 

[0.0109, 

0.2370] 

[0.1472, 

1.0441] 

FOIMCPID 
[0.0729, 

592.7868] 

[0.0899, 

173.6517] 

[0.2223, 

41.7039] 

FOPI 
[1.2069, 

431.3260] 

[0.6808, 

100.9813] 

[1.1609, 

29.5754] 

Smaller indices suggest better performance while denser 

distribution denotes stronger robustness. Besides, the smaller 

ranges of ITAE, ISE and IAE suggest stronger ability of 

handling uncertainties. It is obvious that PRFOPID has the 

superiority in all performance, robustness and ability of 

handling uncertainties. It should be noted that FOIMCPID 

and FOPI may result in non-convergence for some perturbed 
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PHWR models because the settling time is no smaller than 

the whole 20 s. 

K/N which is the estimated value of the probability is also 

calculated, and the value of K/N is 0.9972, 0.6699, 0.9096 

and 0.2305, respectively. PRFOPID has the largest estimated 

value of the probability for perturbed PHWR models, which 

means PRFOPID has most probability to obtain the design 

requirements for the uncertainties PHWR model throughout 

the whole parameter space Q. 

5.2  Heating Furnace Model 

A heating furnace (HF) model is identified based on a real 

experimental heating furnace, the parameter space Q is set by 

taking ± 40% lower and upper bound uncertainties for the 

coefficients and ± 10% lower and upper bound uncertainties 

for the order of HF model. This model with parameter 

uncertainties are depicted as 

 
 

  1 2

2

2

2 1 2 3

1
p

N s
G s

D s a s a s a
 

 
 

                  (23) 

where  1 8996.58,20992.02a  ,  2  3605.712,8413.328a  , 

 3 1.0140,2.3660a  ,  1 1.1790,1.4410  ,  2 0.8730 1., 0670  . 

The parameters of the NM of the HF model are 
1=14994.3a , 

2 =6009.52a , 
3 =1.69a , 

1=1.31  and 
2 = 0.97 . 

The design requirements are set 140st s , 5%   and the 

parameters of FOPID controller can be tuned by the proposed 

method. The proposed controller (FOPID_1) is obtained 

  0.1681

0.38212 958.47
50.7771

312.561417cG s s
s

             (24) 

The response of FOPID_1 is compared to FOPID_2 

controller (Zhao et al. 2005), FOPID_3 controller (Bouafoura 

et al. 2010) and FOPID_4 controller (Merrikh et al. 2010). 

Note that these parameters of those controllers are tuned well 

by the researchers in relevant references and they are listed in 

Table 3. 

Table 3.  Parameters of different controllers for the HF 

model 

Controllers Tuning parameters 

FOPID_2 
=736.8054pk , =-0.5885ik , =-818.4204dk , 

=0.6 , =0.35  

FOPID_3 
=714.9739pk , =107.0099ik , =287.7011dk , 

=0.6 , =0.35  

FOPID_4 
=1000pk , =100ik , =100dk , 

=0.5 , =0.31  

The step response for the NM of HF is shown in Fig. 3, 

FOPID_1, FOPID_3 and FOPID_4 have the same response 

speed while FOPID_1 proposed in this paper have the 

smallest overshoot than other controllers for the NM of HF.  

 

Fig. 3. The step response for the NM of HF with different 

controllers. 

 

(a)                                     (b) 

 
(c)                                     (d) 

Fig. 4. The records for each perturbed HF model with 

different controllers ((a): FOPID_1, (b): FOPID_2, (c): 

FOPID_3, (d): FOPID_4). 

Table 4.  The ranges of ITAE, ISE and IAE for each 

perturbed HF model with different controllers 

 ITAE ISE IAE 

FOPID_1 
[46.2865, 

728.0836] 

[3.4073, 

9.1300] 

[6.4727, 

18.4817] 

FOPID_2 
[340.7160, 

1795.113] 

[10.1364, 

23.0261] 

[17.1536, 

38.1190] 

FOPID_3 
[210.0180, 

1193.163] 

[4.2752, 

10.1753] 

[10.3243, 

25.2119] 

FOPID_4 
[203.9462, 

999.8548] 

[3.8120, 

9.0064] 

[8.6272, 

21.4678] 

Monte Carlo simulation is carried out for N times with the 

uncertainty model in the whole parameter space, the indices 

of ITAE, ISE, IAE, 
st  and   are all recorded in the whole 

300 s. The results of 
st  and   for each perturbed PHWR 

model with different controllers are shown in Fig. 4 and the 

ranges of ITAE, ISE and IAE are listed in Table 4. FOPID_1 

has the smallest indices, densest distribution and the smallest 

ranges of ITAE, ISE and IAE than other FOPID controllers, 

so FOPID_1 has the superiority in all performance, 

robustness and ability of handling uncertainties. 
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The estimated value of the probability K/N is 0.9702, 0.7022, 

0.7993 and 0.8162, respectively. FOPID_1 has the largest 

estimated value of the probability for perturbed PHWR 

models, which means FOPID_1 proposed in this paper has 

most probability to obtain the design requirements for the 

uncertainties HF model throughout the whole parameter 

space Q. 

6. CONCLUSIONS 

In this paper, a tuning method for FOPID controller based on 

probabilistic robustness is proposed to enhance the 

performance, robustness and ability of handling uncertainties 

of FOPID. The tuning procedure is designed for the 

parameter optimization and stability boundaries of FOPID is 

depicted to provide the search parameter space, which is the 

generating space of the initial population for GA. Numerical 

examples for PHWR model and HF model are performed to 

verify the efficacy of the proposed method and show the 

promising application value for the FOPID tuning. 
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