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Abstract: In the present work, an evolutionary tuning is used to determine in a coupled manner the controllers of a 

refrigeration system (VCRS) proposed in the challenge of the 2018 IFAC Conference on Advances in PID Control. 

The evolutionary strategy finds the parameters of the controllers that best satisfy the problem, fulfilling all the 

requirements and restrictions imposed by the challenge. The evolutionary strategy is independent of the structure and 

domain of the model, both the plant and the controllers. 
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1. INTRODUCTION 

Heating, ventilation and air conditioning (HVAC) has 

become a technological option that provides many ways to 

contribute to humanity, the conservation of meals, the control 

of air quality in the interior, etc. Without refrigeration, 

modern life is impossible; approximately 30% of the total 

energy in the world is consumed in HVAC processes, as well 

as in refrigerators and water heaters (Jahangeer, Tay, & 

Raisul Islam, 2011).  

Although in some cases, the air conditioning and refrigeration 

systems are considered separately, all these systems work in 

the same way: they use the reverse Rankine cycle to remove 

the heat from a cold store and transfer it to a hot deposit, 

generally the environment. In such tasks, a large amount of 

energy is required, which negatively affects the economic 

equilibrium (Buzelin, Amico, Vargas, & Parise, 2005). 

Despite this, the use of refrigeration systems has become a 

growing need in some countries, which has allowed the 

development of technologies and equipment with high 

efficiencies to meet this type of tasks, added to the concern to 

reduce the environmental impact. Therefore, achieving a 

high-energy efficiency and simultaneously satisfying the 

cooling demand represents a huge challenge, but at the same 

time, an unbeatable opportunity to solve one of the most 

serious problems facing humanity as it is the energy 

consumption. Most of the global warming effect from 

cooling systems comes from the generation of energy that is 

used to power them. Only a small proportion comes from the 

release of certain refrigerants. 

A challenge based on a vapour compression refrigeration 

system (VCRS) was proposed in the 2018 IFAC Conference 

on Advances in Proportional-Integral-Derivative Control. 

Refrigeration systems are used to remove heat from one 

location and transfer it to another. A VCRS has four 

components: a compressor, a condenser, a thermal expansion 

and an evaporator. In a cycling process, a circulating 

refrigerant enters the compressor as saturated vapour and it is 

compressed to a higher pressure, resulting in a higher 

temperature as a superheated vapour. This hot compressed 

vapour is condensed to liquid by cooling air flowing across a 

coil carrying away heat from the system. This high-pressure, 

high temperature liquid leaving the condenser when passing 

through an expansion valve is cooled and reduced in 

pressure. In the evaporator, this low pressure, low 

temperature liquid is converted to vapour, absorbing heat 

from the refrigerated space and keeping it cool; going again 

to the compressor repeating the process. 

Addressing the problem of energy efficiency is widely 

recognized that the heat transfer is much greater when the 

refrigerant flow is two phases (saturation zone). Therefore, 

the highest efficiency of the evaporator is achieved if the 

refrigerant at the outlet of the evaporator is saturated vapour. 

Currently, through the development of new technologies such 

as variable speed compressors or electronic expansion valves, 

it is possible to operate the cycle with a certain degree of 

superheating (Tsh) of the refrigerant at the outlet of the 

evaporator, a value that must be kept low to approach to the 

ideal behavior. 

This paper describes the strategy to tune two controllers 

applied to two actuating elements on the system (compressor 

and expansion valve) to satisfy the expected cooling demand 

and maximizing the energy efficiency of a vapour 

compression refrigeration system achieving certain degree of 

superheating of the refrigerant (Tsh). For this target the 

model proposed by (Bejarano, Alfaya, Rodríguez, & Ortega, 

2018) is used. 

The paper is organized as follows. In section 2 the cooling 

system and its control are presented, later in section 3 the 

problem of the selected MIMO control is studied. Section 4 

describes how the test and comparative evaluation of 

multivariable controllers was carried out. Afterwards, an 
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analysis of results is presented, this is discussed in section 5, 

and the conclusions are presented in section 6. 

 

2. MODELING THE REFRIGERATION CYCLE 

The model for the Benchmark proposed by (Bejarano et al., 

2018) has been developed in Simulink. (Fig. 1) shows a 

canonical refrigeration cycle of one compression stage and 

one load, where the main components are represented (the 

expansion valve, the compressor, the evaporator and the 

condenser). 

 

Fig. 1 Schematics of the refrigeration cycle by vapour 

compression (Bejarano et al., 2018) 

 In the case of the evaporator, neither the secondary mass flux 

nor the inlet temperature of such secondary flux are intended 

to be controlled. Therefore, the demand for refrigeration can 

be expressed as a reference in the outlet temperature of the 

secondary flux of the evaporator, where the mass flux and the 

inlet temperature act as measurable perturbations. With 

respect to the condenser, the inlet temperature and the 

secondary mass flux are also considered disturbances. Next, 

the main features of the model are described: 

1)  It has a relatively low complexity, while faithfully 

capturing the dynamics of the essential plant and its non-

linearity in a wide range of operation.  

2) The model is oriented to control because the manipulated 

variables, the controlled variables and the significant 

disturbances are explicitly shown. 

3) The model is realistic since restrictions are considered in 

the manipulated variables. 

 

Because the dynamic of the heat exchangers is usually at 

least one order of magnitude faster than of the evaporator and 

the condenser, the most important elements with respect to 

dynamic modeling are the heat exchangers, while the 

expansion valve, the compressor and the thermal behavior of 

the secondary flows are statically modeled. Another 

important element in the refrigeration cycle is the refrigerant, 

which is subject to changes of state, modifying its 

temperature and pressure as it circulates through the system.  

 

To measure the cooling efficiency, the Coefficient of 

Performance (COP) is used, which is defined as the ratio 

between the cooling power generated in the evaporator 𝑄̇𝑒 

and the mechanical power provided by the compressor 

𝑊 ̇𝑐𝑜𝑚𝑝, as indicated in Equation (1).  

𝐶𝑂𝑃 =
𝑄̇𝑒

𝑊̇𝑐𝑜𝑚𝑝

=
𝑚̇(ℎ𝑒, 𝑜𝑢𝑡 − ℎ𝑒, 𝑖𝑛)

𝑚̇(ℎ𝑐, 𝑖𝑛 − ℎ𝑒, 𝑜𝑢𝑡)
 

 
 

(1) 

 In this work, the 𝐶𝑂𝑃 is one of the variables to be controlled 

and it will depend only on the intensive variables, specifically 

the characteristic enthalpies of the cycle, which are 

represented in a p-h diagram. 

 
3. CONTROLLER DESIGN 

To achieve more effective control strategies in the cooling 

process, the underlying problem is the inherent energy 

consumption. The new adjustable speed compressors and 

electronic expansion valves allow the development of more 

intelligent control strategies, not only to save energy, but also 

to reduce fluctuations in the controlled variables and, 

therefore, achieve a more precise control. 

3.1 Approaching to the Control Problem. 

Cooling systems are, as they are generally known, closed 

cycles whose components are connected through various 

pipes and valves, which causes a difficulty when controlling 

these processes due to system conditions such as high 

thermal inertia, dead times, high coupling between variables, 

and strong non-linearity. Dynamic modeling of a VCRS is 

definitely not trivial. 

The conventional control scheme is very simple: in addition 

to the reference imposed by the cooling demand, it must be as 

efficient as possible. The variables to control are the outlet 

temperature of the evaporator secondary flux and the degree 

of superheating (Table 1).  

Table 1 Definition of objectives for the control system 

 

The actuators are the speed of the compressor, N, which 

regulates the degree of heating, Tsh, and the opening of the 

expansion valve, Av, acting on the cooling demand, 

Tsec_evap_out (Table 2). 

Table 2 Actuating Elements 

Manipulated 

Variables 

Variable 

name Units Rank 

Compressor speed N Hz [30-50] 

Expansion valve 

opening 
Av % [10-100] 

 

The control system is designed to obtain those two variables, 

tracking their references as efficiently as possible, in the 

presence of disturbances, which are included in (Table 3). 

The coefficient of performance 𝐶𝑂𝑃 is used as an indicator of 

steady-state quality.  

Objective (Controlled Variable) Variable name Units 

Guarantee a desired cooling value Tsec_evap_out ºC 

Guarantee a desired value for 

superheating degree. 
Tsh ºC 
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Table 3 Disturbances 

Disturbances 

Variable 

name Units Rank 

Condenser 

   Inlet temperature of the 

secondary flux 
𝑇𝑐,𝑠𝑒𝑐,𝑖𝑛 ºC [27-33] 

Mass flow of the 

secondary flux 
𝑚 ̇𝑐,𝑠𝑒𝑐 𝑔 𝑠−1 [125-175] 

Inlet pressure of the 

secondary flux 
𝑃𝑐,𝑠𝑒𝑐,𝑖𝑛 bar - 

Evaporator    
Inlet temperature of the 

secondary flux 
𝑇𝑒,𝑠𝑒𝑐,𝑖𝑛 ºC [22-18] 

Mass flow of the 

secondary flux 
𝑚 ̇𝑒,𝑠𝑒𝑐 𝑔 𝑠−1 

[0.055-

0.0075] 

Inlet pressure of the 

secondary flux 
𝑃𝑒,𝑠𝑒𝑐,𝑖𝑛 bar - 

Other    
Compressor surroundings 

temperature 
𝑇𝑠𝑢𝑟𝑟 ºC [20-30] 

 

The multivariable control included by default in the PID 

Benchmark 2018 consist of a discrete decentralized control 

scheme with a sampling time of 1 second, where the 

expansion valve controls the outlet temperature of the 

secondary flux of the evaporator, while the speed of the 

compressor controls the degree of superheating. (Table 4) 

shows the transfer functions of the respective controllers. 

Table 4 Discrete transfer functions used within the 

predetermined controllers 

Controller Transfer Function 

𝑇𝑒,𝑠𝑒𝑐,𝑜𝑢𝑡−𝐴𝑣 
−1.0136 − 0.0626𝑧−1 + 0.9988𝑧−2

1 − 1.9853𝑧−1 + 0.9853𝑧−2
 

𝑇𝑆𝐻−𝑁 
0.42 − 0.02𝑧−1

1 − 𝑧−1
 

 
3.2 Control Strategy Proposal 

Due to the challenge proposed in the Benchmark PID 2018, 

the model of the VCRS applied is taken directly from  

(Bejarano et al., 2018). It is a Simulink model that uses the 

switched moving boundary (SMB) approach to model the 

refrigerant behaviour when circulating through the heat 

exchangers. Two controllers are tuned upon a decentralized 

approach. However, in this work, the strategy for the control 

system applied is different from the one in the Benchmark. 

Here, the two controllers are simultaneously tuned. When the 

plant is operating, at a same instant, is calculated the error of 

each variable of interest, according to its respective reference. 

Those errors are put together to form a cost function. This 

cost function, i.e. one of the ITAE family, feeds an 

evolutionary algorithm (EA), which takes that cost function 

to adjust the parameters of each controller. In an iterative 

process of concurrently minimizing the error of the cooling 

demand and maximizing the COP, the EA searches for the 

best combination of parameters of the two controllers 

satisfying the problem.  

Being the VCRS a multivariable processes, the interaction 

between variables is inherent. The paradigm of coupling 

control facilitates the operation of the control system, but the 

interaction between variables requires mathematical models 

and computational methods considerably more sophisticated 

than basic PID loops. The path taken to avoid these 

difficulties aiming such a complex problem as the 

multivariable control is allowing an evolutionary algorithm to 

solve directly the interrelationships among the variables of 

the control problem. The Multidynamics Algorithm for 

Global Optimization is very appropriate for this task. This is 

an EA based on statistical operators and uses the covariance 

matrix to deal with the interrelationships among variables in a 

natural way. The selected EA is explained next. 

3.3 Multidynamics Algorithm for Global Optimization – 

MAGO. 

MAGO is an auto-organized evolutionary algorithm that has 

only two parameters: number of generations and population 

size. It bases on statistics from the same evolving population 

and handles evolution global strategies. MAGO uses 

statistical operators instead of genetic operators and through 

the covariance matrix of the population in each generation 

considers the relationships among variables from the 

problem. MAGO is a real-value EA that has shown its 

capacity solving engineering problems (Hernández-Riveros et 

al, 2018) (Balarezo et al., 2017). Unlike others EA, MAGO 

has three different autonomous dynamics for evolving the 

population, this way getting a larger exploration-exploitation 

balance and less likelihood to convergence to a local 

optimum are guaranteed.  

In each generation, MAGO partitions the population in three 

subgroups, each one with its own evolutionary dynamic. 

These three subgroups are the Emergent Dynamics, the 

Crowd Dynamics and the Accidental Dynamics. To 

determine the amount of individuals for each dynamics, the 

actual population is observed as in a normal distribution. The 

average of the current generation, really a virtual individual, 

is calculated on purpose. The number of elements within one 

standard deviation of the actual population conforms the 

cardinality of the Emergent Dynamics. The cardinality of the 

Crowd Dynamics corresponds to the difference between the 

first and second deviation. The number of remaining 

elements is the cardinality of the Accidental Dynamics. These 

cardinalities change in each generation. MAGO through these 

three dynamics produces new individuals in each generation. 

Each dynamics produces a subset for the new population.  

Once the number of individuals within each dynamics is 

determined, MAGO proceeds to create individuals who will 

make up the new population and so continuing with the 

evaluation of new solutions. From the fitness function 

evaluation of each individual, the actual population is 

reorganized from the best to the worst individual. The first 

N1 individuals compose the Emergent Dynamics. The 

amount N1 matches to those individuals within one standard 

deviation of the actual population. The N1 individuals 

obtaining the best values in their objective function mutate 
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applying the Nelder-Mead method of numerical derivation, 

equation (2).  

𝑥𝑇
(𝑗)

= 𝑥𝑖
(𝑗)

+ 𝐹(𝑗) × (𝑥𝐵
(𝑗)

− 𝑥𝑚
(𝑗)

)        (2) 

Where 𝑥𝐵
(𝑗)

 is the best individual of generation j and 𝑥𝑚
(𝑗)

 is a 

randomly selected individual, usually the same test 

individual. 𝐹(𝑗) is a matrix that includes information about 

the covariance of the problem variables, equation (3). 

𝐹(𝑗) =
𝑆(𝑗)

‖𝑆(𝑗)‖
          (3) 

Where 𝑆(𝑗) is the sample covariance matrix of the individual 

population in generation j. 

Emergent Dynamics is improved elite seeking solutions in a 

neighbourhood getting closer to the very best of all the 

individuals. This subgroup has the function of making faster 

convergence of the algorithm but keeping an equilibrium 

between exploitation-exploration among the best individuals.  

The Crowd Dynamics keeps the memory of the evolution 

process and is a sampling from a uniform distribution 

determined by the upper and lower limits of the second 

dispersion and the mean of the current population. This 

subgroup seeks possible solutions in a neighbourhood close 

to the population mean on the hyper-rectangle [LB(j), UB(j)]. 

Equations (4) and (5) are vectors with the diagonal of the 

population dispersion matrix of the generation j, described by 

equation (6). 

𝐿𝐵(𝑗) = 𝑥𝑀
(𝑗)

− √𝑑𝑖𝑎𝑔(𝑆(𝑗))  

       (4) 

𝑈𝐵(𝑗) = 𝑥𝑀
(𝑗)

+ √𝑑𝑖𝑎𝑔(𝑆(𝑗))       (5) 

𝑆(𝑗) 𝑑𝑖𝑎𝑔(𝑆(𝑗)) = [𝑆11
(𝑗)

   𝑆22
(𝑗)

    …     𝑆𝑚
(𝑗)

]
𝑇

        (6) 

The Individuals of the Accidental Dynamics are samples 

from a uniform distribution throughout the searching space, 

similarly as in the initial population. It is smaller in 

magnitude but has two basic functions: maintaining the 

diversity of the population, and ensuring numerical stability 

of the algorithm. Following is the MAGO pseudo code: 

1: j:= 0; Random initial population with a uniform 

distribution over the search space. 

2: Repeat 

3: Evaluate each individual with the fitness function. 

4: Calculate the population covariance matrix and the first, second 

and third dispersion of the population. 

5: Calculate cardinalities N1, N2 and N3 of the 3 dynamics. 

6: Select the N1 best individuals, move toward the best of all 

according to equation 2, make compete with their parents, 

and choose the best of them to the next generation j + 1. 

7: Sample N2 individuals from a uniform distribution in the 

hyper rectangle [LB(j), UB(j)], and pass to the next 

generation j + 1. 

8: Sample N3 individuals with a uniform distribution over the 

entire search space. Pass to the next generation j + 1. 

9: j = j + 1 

10: Until to satisfy a stopping criterion. 

 

3.4 Coupled Evolutionary Tuning 

Because MAGO is a real-valued evolutionary algorithm, the 

representation of an individual is a vector containing the 

parameters of the two controllers. The structure of the 

evolutionary individual is, first, the coefficients of the 

numerator (n1, n2, n3) and denominator (d2, d3) for the 

controller of the opening of the expansion valve, and then the 

coefficients of the PI controller of the compressor speed. The 

values are real numbers in a continuous domain (Table 5). 

Table 5 Structure of the evolutionary individual 

n1  
Є R 

n2 
Є R 

n3 
Є R 

d1 
Є R 

d2 
Є R 

P  
Є R 

I  
Є R 

 

Two errors are calculated at the same instant. The error e1 of 

the degree of superheating, and the error e2 of the cooling 

demand, see equations (6) and (7). The total error is the sum 

of these variable errors, equation (8), and it is calculated for 

each point of time throughout the measurement horizon.  

e1(t) = Tsh – refTsh   (6) 

e2(t) = Tsec_evap_out – ref Tsec_evap_out (7) 

eT(t) = e1(t) + e2(t)   (8) 

The control problem consists in determining both controllers’ 

settings minimizing a chosen cost function. The objective is 

minimizing the integral of the total error, eT(t), multiplied by 

the time (ITAE). This involves finding the values for the 

whole parameters of each one of the two controllers, such 

that the system gets the desired r(t) values of the cooling 

demand and the degree of superheating, as fast as possible 

and with few oscillations. The fitness function for MAGO is 

in equation (9). 

J (n1, n2, n3, d1, d2, P, I) = min  JITAE =  t| eT(t)|dt        (9) 

In (Fig. 2), the evolutionary procedure to estimate the 

parameters for several controllers considering the coupling of 

the problem variables can be observed. All the controllers act 

simultaneously over the plant responding to deviation from 

the references. At the same instant, different partial errors are 

calculated and they are gathered to assemble the total error of 

the system. When a cost function involves concurrently the 

errors of all variables in study, intrinsically is considering the 

coupling of the problem variables. MAGO takes into account 

this interdependence when estimates the parameters of the 

several controllers in the system while minimizing the ITAE. 

A new family of controllers act over the plant expecting a 

decrease in the deviation from a desired behaviour. The 

procedure repeats until a stop criterion. Regardless the 

modelling of the plant and the structure or domain of the 

controllers, this procedure applies equally. 

4. TUNING OF THE PID CONTROLLERS AND 

OPTIMIZATION OF THE VCRS. 

As can be seen in (Fig. 2), the VCRS is composed of two 

controllers; the first is a discrete PID controller that 

corresponds to the speed of the compressor and the second a 

discrete transfer function that acts on the opening of the 

expansion valve. (Table 6) shows the input data for the 

MAGO algorithm. In addition, the bounds of the parameters 

of each controller. The first five values are for the parameters 
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from the controller structure in transfer function, for the 

evaporation valve. The last two values correspond to the 

bounds for the tuning the PI, for the compressor speed. For 

all the tests, two different evaluation criteria were 

established: (1) a quantitative comparison by means of the 

ITAE and ISTSE performance criteria, and (2) a qualitative 

comparison through graphs that determine the quality of the 

response of the system. 

 

Fig. 2 Coupled evolutionary tuning procedure 

The possibility of finding a good solution is subjected to the 

availability of time for testing. However, it was possible to 

find good results from the minimization of the ITAE mainly. 

Exemptions were also considered with minimization of the 

ISTSE cost function. In an Intel (R) Xeon (R) CPU @ 

2.30GHz with 7.20GB and 64 bit, the average execution time 

was 11 hours, this because the structure of the Benchmark. 

Each evaluation of an individual by the MAGO requires an 

own execution of the plant in Simulink. 

The cost functions used did not have any weight associated 

with the valve controller or the compressor controller, so in 

tuning both controllers are equally important. (Table 7) 

shows that even with few generations and individuals it was 

possible to find a cost function better than the one proposed 

in the Benchmark. 

Table 6 Input Data for MAGO 

Data Values 

Individuals 20 

Generations 10 

Upper bound [-1  0  1  -1.9  1  2.7  2.7] 

Lower bound [-1.3  -0.6  0.7  -2  0.9  0.4  0.5] 

 
Table 7 Parameters of each controller applying MAGO 

Expansion Valve 
(Controller1) 

Compressor 
(Controller 2) 

𝑴𝑨𝑮𝑶
1,1039 − 0,2901 0,8961

1 − 1,9185 0,9184
 

 
 

 

P: 1,2829 

I: 1,6916 

𝑩𝒆𝒏𝒄𝒉𝒎𝒂𝒓𝒌 𝑷𝑰𝑫
−1,0136 − 0,0626 0,9988

1 − 1,9853 0,9853
 

𝑩𝒆𝒏𝒄𝒉𝒎𝒂𝒓𝒌 𝑷𝑰𝑫
−1,0136 − 0,0626 0,9988

1 − 1,9853 0,9853
 

𝑩𝒆𝒏𝒄𝒉𝒎𝒂𝒓𝒌 𝑷𝑰𝑫
−1,0136 − 0,0626 0,9988

1 − 1,9853 0,9853
 

 

P: 0,4200 

I: 0.9524 

 

For both approaches, the results obtained for the temperature 

of the secondary flux in the evaporator, Te sec out, and the 

temperature of superheating, Tsh, are presented in Figures 3 

to 6. They include the dynamics in the behavior of the 

actuators, and in the variables that determine the thermal 

behavior of the system. Although the response is 

quantitatively improved, qualitatively there is a margin for 

improvement, and the solution presented in the Benchmark 

behaves with greater smoothness in the system. This is 

because the cost function used punishes the error in time and 

requires a rapid follow-up of the reference. For the 

comparison, the best result found so far with the MAGO was 

used, which has an ITAE = 26.35. 

The Benchmark PID-2018 also facilitates the quantitative 

comparison of two controllers based on the same simulation. 

Using that structure, the C1 controller corresponds to the 

Benchmark proposal and C2 to the results obtained with 

MAGO. According to the benchmark quantitative analysis, 

eight individual performance indices and a combined index 

are evaluated in this comparison (Bejarano, Alfaya, 

Rodríguez, & Ortega, 2018). That is, for the results (see 

Table 8) the structure predefined by the authors was used. 

This comparative procedure is very useful and allows seeing 

how a control strategy behaves in relation to another in terms 

of the changes and phenomena that should be known about 

the system. The original Benchmark indicator J is calculated 

assigning a weight value to each error indicator; however, 

such values are unknown. 

Table 8 Relative indices and combined index according to the 

Benchmark for the comparison of controllers 

C1: Benchmark;   C2: MAGO 

Index Value 

RIAE1(C2,C1) Te,sec,out 0.7520 

RIAE2(C2,C1) TSH 0.6558 

RITAE1(C2,C1,tc1,ts1) Te,sec,out 5.4358 

RITAE2(C2,C1,tc2,ts2) TSH 0.4454 

RITAE2(C2,C1,tc3,ts3) TSH 0.4970 

RITAE2(C2,C1,tc4,ts4) TSH 0.4548 

RIAVU1(C2,C1) Av 1.0658 

RIAVU2(C2,C1) Compressor 1.1159 

J(C2,C1) 1.7472 

 

In this paper, ease of use indices to measure the ITAE error 

equation (9) throughout the whole simulation period for each 

control variable are proposed equations (10) and (11), see 

(Table 9), where C1: Benchmark PID and C2: MAGO. In 

order to know the error rate between the MAGO strategy and 

the PID Benchmark strategy, in equation (12) the total cost 

functions for each approach are related, see (Table 10). 

 

𝐽1(𝐶2, 𝐶1) 𝑇𝑒, 𝑠𝑒𝑐, 𝑜𝑢𝑡 =
𝐽𝐼𝑇𝐴𝐸1(𝐶2)

𝐽𝐼𝑇𝐴𝐸1(𝐶1)
                                   (10) 

𝐽2(𝐶2, 𝐶1) 𝑇𝑠ℎ =
𝐽𝐼𝑇𝐴𝐸2(𝐶2)

𝐽𝐼𝑇𝐴𝐸2(𝐶1)
                                                (11) 

 

𝐽𝑇(𝐶2, 𝐶1) =
𝐽𝐼𝑇𝐴𝐸𝑇(𝐶2)

𝐽𝐼𝑇𝐴𝐸𝑇(𝐶1)
                                                       (12) 

 

Table 9 Cost functions throughout the whole simulation 

period for the two approaches 

Control 

Strategy 

JITAE1 

Te,sec,out 

JITAE2 

TSH 

JITAET 

JT 

C2 2,894.7 267.4089 26.3511 

C1 4,274 353.0790 38.55 
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Table 10 Relative indices and the combined index throughout 

the whole simulation period 

Index Value 

J1(C2,C1) Te,sec,out 0.6772 

J2(C2,C1) TSH 0.7573 

JT(C2,C1) System Cost Function 0.6835 

 

5. CONCLUSIONS 

The results of the simulation show that the control strategy 

with the MAGO achieves remarkable results considering the 

high coupling and the complexity of the system. 

 

The MAGO improves the ITAE criteria in comparison with 

the Benchmark strategy. Qualitatively the improvement is not 

evident due to the presence of oscillations, having a faster 

follow-up of the reference. The oscillation can be reduced by 

rewriting the cost function in such a way that the overshoot or 

other criteria are punished. Increasing the population size 

and/or the generations number for the execution of the 

MAGO, or by expanding the search space are another ways 

to obtain a better response. 

 

On the other hand, optimization through the MAGO is very 

useful for highly coupled complex systems. This method can 

be implemented without any inconvenience in future 

developments for control of cooling systems of multiple 

loads and stages. Here, the same structure presented in the 

Benchmark of a discrete transfer function and a PI controller 

was used, however, the MAGO is independent of the 

structure and the domain of the controller to be tuned. Future 

work is twofold, applying standard PID controllers in the 

time domain, and using Pareto front for the tuning. 

 

Fig. 3 Controlled variables 

 
Fig. 4 Manipulated Variables 

 
Fig. 5 Thermal and mechanical power at each component and 

refrigerant mass flow 

 
Fig. 6 Compressor efficiency and Coefficient of 

Performance. 
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