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Abstract: In this paper, an original method for the design of PID Controller for MIMO application is 

presented. The proposed method is based on the CRONE MIMO approach which makes easier the design 

of MIMO robust controllers. The problem treated here is the control of a refrigeration system based on 

vapour compression in order to achieve high energy efficiency and to satisfy the cooling demand. 

Simulation results show the good control performance and robust stability for a wide set of operating 

points. 
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
1. INTRODUCTION 

1.1 Fractional PID controller 

The Proportional, Integral and Derivative (PID) controller is 

widely used in industrial application. It ensures speed, 

accuracy and stability degree performance. A parallel form of 

the PID controller is often proposed for an output feedback 

(Fig.1): 
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A series form of the PID controller could be easier to design: 

  
F2

1I
0

1

1
   

1

1
  1   





ss

s

s
CsC












 . (2) 

 
Fig. 1. Unity-feedback configuration 

Each term is band-limited and ensures one of the controller 

behaviour: proportional, integral, derivative and filtering. The 

low-pass filter has been added to make the controller strictly 

proper and thus to ensure a decreasing gain of the control 

sensitivity function. 

Replacing the Laplace variable s by fractional power of s, 

parallel PID (1) becomes a PIDthat should be defined by: 
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Through the two more parameters  and , this controller 

offers a better flexibility than the conventional PID and the 

constant F avoids that the control sensitivity function tends 

towards infinity. Depending on the value of , C(s) is 

biproper for  =  and strictly proper for  > .  

In order to simplify its design and implementation, it is 

possible to choose a fractional order PID controller defined 

by: 
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with I 1 2 F       and In N , R , NFn . Fig. 2 

presents a Bode plot of this PID(F) controller. For  = ,  = 

nI, the corner frequencies of (3) can be approximated by: 
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Fractional order PID has been the subject of considerable 

interest among researchers who have developed a large 

number of tuning techniques (Podlubny 1999a-b, Chen 2004, 

Petras 1999, Nataraj 2007, Monje 2010, etc.). This interest is 

due mainly to the usual belief that “fractional” leads 

necessarily to an improved performance, mainly in terms of 

robustness. Nevertheless, the fractional order PID designs do 

not explicitly take into account a well-defined perturbation 

model of the plant. At the opposite, the fractional order 

CRONE design methodology is based on the perturbed model 

in order to ensure both performance and robustness. 

1.2 CRONE Control-System Design (CSD) methodology 

The CRONE (a french acronym which means fractional order 

robust control) CSD methodology is a frequency-domain 

approach developed since the eighties (Oustaloup 1983, 
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1991, 1995; Lanusse, 1994). It is based on the common 

unity-feedback configuration presented by Fig. 1. Three 

CRONE CSD methods have been developed. Each of them 

denotes a generation of CRONE design. The first two are 

based on a real fractional order and ensure a good robustness 

for plant gain variations. 

The first generation CRONE controller is defined within a 

frequency range [A, B] around the desired open-loop gain 

crossover frequency cg from the fractional transfer function 

of an order n integro-differentiator. To manage the control 

effort level and steady state errors, the CRONE controller 

includes a band-limited integrator and low-pass filter. It is 

defined by relation (4) with cg 1 2   . Around cg the 

constant controller phase /2 ensures the constancy of the 

phase margin when the plant phase is constant both versus 

frequency and plant parameters. The achievable rational 

version of this controller can be obtained using the 

Oustaloup’s approximation (Oustaloup 1983, 1991). 

 
Fig. 2. Frequency response of a series fractional order 

PID(F) controller for: nI = 2, nF = 1 and  = 0.75 

The second CRONE CSD generation can be used even if the 

plant phase varies versus the frequency. It uses a nominal 

open-loop transfer function that includes a band-limited 

fractional order integrator. 

The third generation extends the field of application of the 

second one and should be used for any kind of plant 

perturbation model. The nominal open-loop (for the nominal 

plant G0) is defined by: 

       ssss hml0   , (6) 

- where m(s) is a set of band-limited complex fractional 

order integrators: 
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- where l(s) is an integer order nl proportional integrator and 

where h(s) is a low-pass filter of integer order n
h
: 
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Gains Cx (Ck, Cl and Ch) are such that r is the nominal 

closed-loop resonant frequency. Order nl has to be set to 

manage the accuracy provided by the control-system. Order 

nh has to be set to obtain a bi-proper or strictly-proper 

controller.  

When N+ = N- = 0, only four open loop parameters are 

optimized in order to minimize a robustness cost function J: 

T T0up 
G

J s M M  , (10) 

where MT0 is a required value of the nominal resonant peak of 

the complementary sensitivity function T(s). To manage 

precisely performance related to tracking, regulation and 

control effort level, 5 inequality constraints are to be fulfilled 

for all plants (or parametric states of the plant): 
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The optimal open-loop parameters position the open-loop 

frequency uncertainty domains –defined by possible values of 

G(j)/G0(j)– in order to not overlap the low stability margin 

areas of the Nichols chart. The parameterization of the 

nominal open-loop transfer function by complex fractional 

orders simplifies the optimization considerably. During 

optimization a complex order has the same function as a 

whole set of parameters found in common rational 

controllers. When it is useful, N- and N+ are different from 0 

to increase the number of tuning parameters.  

Then, the fractional controller CF(s) is defined by its 

frequency response: 
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Finally, this desired frequency response is fitted by a low 

order rational transfer function CR(s). When the objective is 

to design a PID, an order 3 rational transfer function is tuned. 

In other words, a robust PID controller can also be designed 

by using the third generation CRONE design methodology. A 

CRONE CSD toolbox is downloadable for free (Lanusse, 

2010).  

1.3 Refrigeration system based on vapour-compression 

The non-linear MIMO system to be controlled is a 

refrigeration system based on vapour compression (Bejarano, 

2017). This system (Fig 3) requires 4 components: a 

compressor, condenser, expansion valve, and evaporator. The 

compressor compresses the refrigerant to a high pressure and 
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high temperature and then flows to the condenser, which is a 

heat exchanger where heat is rejected to the environment. 

The refrigerant is condensed to a liquid. The hot liquid 

refrigerant then passes through an expansion valve, where the 

refrigerant expands to a low pressure and a low temperature. 

The cold refrigerant then flows through the evaporator, where 

it absorbs heat and boils back into a vapour on its way back 

to the compressor. Two variables: the outlet temperature of 

the evaporator secondary flux Te,sec,out (which represent the 

cooling demand) and the degree of superheating TSH are to be 

controlled by manipulating two variables: the compressor 

speed N and the expansion valve Av and by considering also 

the disturbances. The coefficient of performance COP is used 

as quality steady-state performance variable, which defined 

as the ration between the cooling power generated at the 

evaporator and the mechanical power provided by the 

compressor. The model is controlled with a sampling period 

equals to 1 second. 

 
Fig. 3. Simulink block describing the refrigeration process 

2. CRONE APPROACH FOR MIMO SYSTEMS 

2.1 CRONE Control-System Design (CSD) methodology 

The CRONE methodology has been extended to control a 
MIMO mxn system G (n inputs, m outputs) (Lanusse et al., 
1996, 2000, 2016; Sutter, 1997, Sabatier et al., 2015). The 
main objective is to determine nxm controller C that ensures 
the perfect decoupling of the closed-loop complementary 
sensitivity function T0 for the nominal plant model G0. Thus 
the nominal open-loop transfer function is diagonal and is 
defined by: 
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Each element of (s) is based on the third generation 
CRONE SISO methodology as described in section 1.2. 
Parameters of all 0ii(s) are optimized together in order to 
stabilize the nominal closed-loop and to minimize the 
resonant peak variation of all Tii(s). Once (s) has been 
optimized, the controller is obtained from 
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where G0
*(s) is G0

-1(s) the inverse matrix of G0(s) when m = 

n, or G0
†(s) the Moore-Penrose pseudo-inverse matrix of 

G0(s) in the case when m ≠ n. To ensure the system stability, 

the nominal open-loop transfer function should include some 

time-delays and poles and zeros in the right half-plane and 

lightly damped modes which appear in G0
*(s) and G0(s) 

(Nelson-Gruel et al., 2008, Sabatier et al., 2015, Lanusse et 

al., 2016). This methodology provides an efficient MIMO 

controller, but may be sometimes difficult to use: taking into 

account all the features of G0
*(s) and G0(s) could be 

cumbersome. Thus, when a RGA analysis proves it (Sabatier 

et al., 2015), LTI square mxm MIMO uncertain plants can be 

controlled using decentralized (diagonal) MIMO controllers. 

2.1.1 MIMO design of a decentralized controller 

A decentralized controller can be obtained by choosing an 

arbitrary diagonal model for G0(s). Nevertheless, the MIMO 

features of G are taken into account at the time of MIMO 

open-loop optimization as for instance they contribute to the 

resonant peak variation of all perturbed Tii(s) (Lamara 2012). 

Thus, the parameters of all 0ii(s) need to be optimized at the 

same time. 

2.1.2 Multi-SISO design of a decentralized controller 

When the plant is diagonal dominant, the multi-SISO 

CRONE approach can be used to design a decentralized 

controller (Sutter, 1997, Lanusse, 2010) This approach 

enables an independent tuning of each open-loop transfer 

function 0ii(s) (thus of each Ci(s)) by taking into account the 

diagonal nominal transfer function Gii0(s) and an uncertainty 

defined by the structured uncertainty coming from all 

possible values Gii(s) enlarged by an unstructured uncertainty 

computed from modulus of column off-diagonal terms Gji(s).  

3. MIMO PLANT ANALYSIS 

The MIMO refrigeration system needs to be analysed to 

know what kind of controller and control system design 

methodology can be used. For this purpose, several tools can 

be used: Relative Gain Array Analysis (RGA), Column 

Diagonal Dominance Degree (CD3). But, first of all, in order 

to use these tools, the previous described system needs to be 

linearized. 

3.1 System linearization 

The refrigeration system is linearized around 9 operating 

points (blue points in fig. 4) chosen in the space of the 

controlled variables (Bejarano, 2017). 

 
Fig. 4. Operating points used for system linearization 

The obtained frequency responses are represented on Fig. 5. 

The nominal operating point is arbitrary defined by Plant #2 

located on Fig. 4. Each input-output transfer function is 

described by: G11: from Av (%) to Te,sec,out (°C); G12: from N 
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(Hz) to Te,sec,out (°C); G21: from Av (%) to TSH (°C); G22: from 

N (Hz) to TSH (°C). From Fig.5, we can notice variations of 

frequency responses due to the nonlinearities of the system. 

Thus, these nonlinearities will be taken into account in the 

controller design.  

 

Fig. 5. Bode diagram of nominal plant frequency response 

(solid brown curves) and all operating point frequency 

responses (blue dashed curves) 

3.2 RGA and CD3 analysis 

The RGA tool quantifies the relationship between an input 

and an output and expresses how the output can be modified 

by the other inputs. It shows the coupling level of a system 

and if a decentralized control could be efficient. For a given 

mxm plant G, the RGA matrix is obtained from: 

            mjiij    and     withjjjj
T1    GGG  , 

 (13) 

For the considering MIMO system, Fig. 6 shows that for the 

9 operating points, 11(j) and 22(j) are close to 1 and 

greater than 12(j) and 21(j) along the studied frequency 

range. Thus a decentralized controller can be efficient to 

control the plant. 

 
Fig. 6. Magnitude of diagonal and off-diagonal elements of 

the RGA matrices of G 

The CD3 tool compares, column by column, the magnitude of 

each diagonal element Gii of G to the sum of the magnitude 

of the off-diagonal elements Gji with j ≠ i. Fig.5 shows that 

|G22| is greater than |G21| but |G11| is lower than |G21|. Which 

means that, an efficient C2(s) can be designed by using the 

CRONE multi-SISO approach to control output y2 of Fig.7. 

At the opposite, designing C1(s) by using the multi-SISO 

approach would provide a conservative controller for output 

y1. Nevertheless, C1(s) can be designed by using the SISO 

approach and by taking into account the equivalent plant 

G11
*(s) defined by Y1(s)/U1(s) with U2(s) = -C2(s)Y2(s). 

 
Fig. 7. Decentralized control of a 2x2 MIMO plant 

4. DESIGN OF A DECENTRALIZED CRONE 

CONTROLLER 

4.1 Multi-SISO CRONE design of C2(s) controller 

Fig.8.a shows the Nichols plot of G22 whose uncertainty 

frequency domains have been enlarged by taking into account 

the off-diagonal elements G12 of G. 

 
Fig. 8 (a) Nichols plot of G22 of G: nominal frequency 

responses (__); enlarged uncertainty domains (__); (b) 

Nichols plot of 022 nominal frequency response (__); 

enlarged uncertainty domains (__); 0.1 dB M-contour related 

to MT0 (__) 

By taking into account the enlarged uncertainty, 022(s) = 

C2(s)G022(s) is tuned. The desired closed-loop bandwidth is 

0.5 rad/s. Fig. 10 shows the frequency domain constraints and 

the nominal and extreme values of the optimal sensitivity 

functions The required resonant peak MT0 is 0.1 dB, the 

resonant peak limitation (T) is 2dB. In order to ensure a fast 

convergence of the output towards the input, the sensitivity 

function T is chosen very close to 0dB at low frequency 

(-0.1dB <T <0.1 dB). The sensitivity function limitation (S) is 

6dB and the plant input sensitivity function limitation (SG) is 

-5dB. The control effort sensitivity function limitation (CS) is 

25dB. The low frequency order nl2 of the nominal fractional 

open loop needs to be 1. To limit the control effort sensitivity 

at high frequency and to obtain a strictly proper controller, 

the high frequency order nh2 needs to be 2. The 4 optimized 

parameter values for 022 are: Yr2 = 9.95 dB; r2 = 0.09 rad/s; 

02 = 0.119 rad/s; 12 = 2.16 rad/s. Thus, a02 = 1.08, b02 = 0.42 

and K2 = 2.72. Fig. 8.b presents the Nichols plot of the 

optimized open loop frequency response 022(s). The final 

value of the cost function J is 0.12 dB and all sensitivity 

constraints are met (Fig. 9.a). Finally, by using relation (13) 

we obtain the fractional version of C2(s) whose frequency 

response is fitted by an order 3 PID-like rational transfer 

function: 
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Fig. 9 Frequency-domain constraints (---) on perturbed values 

of |T(j)|, |S(j)|, |CS(j)| and |SG(j)|: (left) for controller 

C1; (right) for controller C2; 

4.2 SISO CRONE design of C1(s) controller 

The nominal open-loop transfer function 011(s) = 

C1(s)G011
*(s) is designed by taking into account the 

equivalent plant G11
*(s) which includes the controller C2(s): 
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Fig.10.a shows the Nichols plot of G11
*(s). 

 
Fig. 10 (a) Nichols plot of G11

*: nominal frequency response 

(__); uncertainty domains (__); (b) Nichols plot of 011 

nominal frequency response (__); uncertainty domains (__); 

0.5 dB M-contour related to MT0 (__) 

For 011, the required resonant peak MT0 is 0.5 dB, the 

resonant peak limitation (T) is 4.5dB, the sensitivity function 

limitation (S) is 6dB and the plant input sensitivity function 

limitation (SG) is -19dB. The optimized parameters values 

are: Yr1 = 9.95 dB; r1 = 0.1 rad/s; 01 = 0.009 rad/s; 11 =2 

rad/s, nl1 = 1, nh1 = 2 and. Thus, a01 = 1.13, b01 = 0.24 and K1 

= 40.7. The final value of the cost function J is 0.37dB. Fig. 

10.b and 9.b present the Nichols plot of the optimized open 

loop frequency response 011(s) and the sensitivity 

constraints. The PID-like rational form of C1(s) is: 
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s s
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4.3 Linear framework evaluation of the CRONE 

decentralized controller 

Fig.11 shows the step responses of the closed-loop linear 

system (9 operating points) for step variations of the 

reference signals. As we can observe, the plant outputs are 

both stable and damped: the percentage overshoots are 

always lower than 20%. As for the coupling effects, both 

disturbances are rejected. 

 

Fig. 11 Variations of y1 and y2 (__) for step 

variations of yref 1 and yref 2 (__) 

5. SIMULATION RESULTS 

5.1 Evaluation results 

A standard simulation have been performed using the model 

defined in section 1. This simulation, includes step changes 

in the input signals references on Te,sec,out and TSH and in the 

most important disturbances: the inlet temperature of the 

evaporator secondary flux Te,sec,in and the inlet temperature of 

the condenser secondary flux Te,sec,in. A sampling time of 1 

second is considered. Fig. 12 presents the results of the 

standard simulation using the decentralized CRONE 

controller described in section 4. It shows that the plant 

outputs are stable and well damped: the percentage 

overshoots are always less than 20%.with the respect to the 

input references and a settling time less than 30s. Moreover, 

it is important to observe that the plant outputs are decoupled 

and the disturbances are well rejected. 

5.2 Comparing multivariable controllers 

In this subsection, the CRONE decentralized controller is 

compared with the default PID decentralized controller 

described in (Bejarano, 2017). On Fig 12, we appreciate that 

the better response of Te,sec,out and TSH are reached with the 

CRONE controller and this for a fairly close control effort 

level compared with the one of the default PID controller. 

Moreover, for a quantitative comparison eight individual 

performance indices and one combined index are evaluated 

(Bejarano, 2017). The numerical values of the evaluated 

indices are presented on Table 1. As we can see, all the 

indices quantifying the error signals for the CRONE 

controllers are better than those of the benchmark controller. 

Table 1. Relative indices and the combined index associated 

to the qualitative controller comparison 

Index Value 

(CRONE) 

Value 

(Benchmark) 

RIAE1 (C2 ,C1 ) 0.28196 0.3511 

RIAE2 (C2 ,C1 ) 0.2918 0.4458 

RITAE1(C2 ,C1 ,tc1 ,ts1 ) 0.21776 1.6104 

RITAE2(C2 ,C1 ,tc2 ,ts2 ) 0.09181 0.1830 

RITAE2(C2 ,C1 ,tc3 ,ts3 ) 0.13766 0.3196 

RITAE2(C2 ,C1 ,tc4 ,ts4 ) 0.065014 0.1280 

RIAVU1 ( C2 ,C1 ) 1.0567   1.1283 

RIAVU2 ( C2 ,C1  ) 1.1143 1.3739 

J( C2 ,C1  ) 0.2751 0.68209 
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6. CONCLUSION 

In this paper, we propose a frequency-domain method to 

design a robust decentralized PID controller for a MIMO 

refrigeration system based on vapour compression. The 

designed controller was obtained by optimizing open-loop 

linear behaviours using the multi-SISO CRONE CSD 

approach. It took into account both the nonlinear and MIMO 

behaviours of the plant. Good control performances of the 

proposed controller have been demonstrated in simulation 

and compared to another control structure provided by the 

PID 2018 Benchmark. 

   
Fig. 12 Qualitative comparison of two standard simulations 

with the MIMO Refrigeration Control System: controlled and 

manipulated variables 
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