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Abstract: This paper deals with the design of Proportional-Integral (PI) and Proportional-
Integral-Derivative (PID) controllers. The main result is a constructive determination of the
set Sγ of stabilizing PI and PID controllers achieving an H∞ norm bound of γ on the error
transfer function. This result utilizes the computation of the complete stabilizing set S recently
obtained. We also point out connections between this H∞ design and Gain and Phase Margin
designs. Illustrative examples are presented.
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1. INTRODUCTION AND BACKGROUND

In servomechanisms the tracking error needs to be small
for the class of reference signals and disturbance signals
encountered. For step references and disturbances the in-
tegral controller yields zero steady state error provided
the closed loop is stable. Integral control is usually imple-
mented as a PI or PID controller in practice. In this paper
we consider the additional design criterion of an H∞ norm
specification on the error transfer function and show that
the complete set of PI and PID controllers satisfying H∞
norm specification can be constructively determined.

In the next section we develop a relationship between
H∞ norm specification on the error transfer function and
guaranteed classical gain and phase margins. Following
this we present our constructive calculation of Sγ for
PI or PID controller sets satisfying the given H∞ norm
specification of γ.

In Emami and Watkins (2009), the 2D regions of stabi-
lizing PID controllers achieving the H∞ norm bound of
γ on the sensitivity and complementary sensitivity func-
tions with weightings were found by using Neimark’s D-
decomposition. The difference is that our approach explic-
itly uses the stabilizing set S, and thus can determine the
limits of achievable performance.

Similar approach was adopted by Tantaris et al. (2006) for
first order controllers and in this case the stability region
was computed a priori. Krajewski and Viaro (2012) showed
that at a fixed frequency (and for a fixed kd, the derivative
gain) the L2 norm of the error transfer function being equal
to γ was represented by an ellipse in (kp, ki) space where
kp was the proportional gain and ki was the integral gain.

An H∞ optimal PID design using a frequency loop-
shaping approach was reported in Tsakalis and Dash
(2013); Ashfaque and Tsakalis (2012). PID gains were
chosen by an optimization problem with a desired open

loop transfer function. All PID gains were assumed to be
positive in order for the constraint to be a convex set.
However, the stabilizing set is not convex in general. See,
for instance, Example 2.2 in Bhattacharyya et al. (2009).

The computation of all PID stabilizing controllers, the
stabilizing set, and extensions were developed in Bhat-
tacharyya et al. (2009). In Dı́az-Rodŕıguez and Bhat-
tacharyya (2016) the subset of the stabilizing set achiev-
ing prescribed gain and phase margin specifications were
found.

2. H∞ CONTROL AND STABILITY MARGINS

Consider the unity feedback system (see Fig. 1)

G(s)
r(t) + e(t)

m
×

y(t)

−

Fig. 1. Unity feedback control loop.

with the error transfer function
e(s)

r(s)
=

1

1 +G(s)
. (1)

Suppose that G(s) includes a controller designed to make
the H∞ norm of (1) less than γ, a prescribed real positive
number. Then

1

|1 +G(jω)|
< γ, for all ω ≥ 0 (2)

and (2) is equivalent to

|1 +G(jω)| > 1

γ
, for all ω ∈ [0,∞). (3)

We will now establish that (3) implies guaranteed gain and
phase margins at the loop breaking point ‘m’ in Fig. 1.

Remark 1. Let γ∗ denote the infimum value of γ satisfying
(3). When G(s) is strictly proper, γ∗ ≥ 1. When G(s) is
proper, γ∗ > 1/ |1 +G(j∞)|.
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Case 1: γ > 1
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Fig. 2. γ > 1

The condition (3) implies that the Nyquist plot G(jω)
stays out of the circle CEDB centered at −1 + j0 and
of radius 1/γ. In Fig. 2, we have the limiting case in which
G(jω) passes through B, the phase margin is φ and

G(jω) =
−→
OB, − 1 + j0 =

−→
OA, 1 +G(jω) =

−→
AB.

Since
−→
OA +

−→
AB =

−→
OB and

−−−→
OAB is an isosceles triangle,

−1 + j0 +
1

γ
e−jθ = −1ejφ and 2θ + φ = π. (4)

From (4),

−1 +
1

γ
sin

(
φ

2

)
= − cosφ (5)

sinφ =
1

γ
cos

(
φ

2

)
. (6)

From (6),

φ = 2 sin−1
(

1

2γ

)
(7)

which is the guaranteed minimum phase margin for the
H∞ controller with the norm less than γ.

The guaranteed gain margin is the interval:[
1

OD
,

1

OC

]
=

[
γ

γ + 1
,

γ

γ − 1

]
. (8)

Case 2: γ = 1
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Fig. 3. γ = 1

In this case, Fig. 2 is replaced by Fig. 3. It is easy to see
that the guaranteed phase margin is φ = π/3 and the
guaranteed gain margin is

[
1
2 ,∞

]
. These also follow from

formulas (7) and (8) evaluated at γ = 1.

Case 3: γ < 1
The geometry corresponding to this case is shown in Fig.
4 below.
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Fig. 4. γ < 1

In this case, it also follows that the guaranteed phase
margin is

φ = 2 sin−1
(

1

2γ

)
(9)

and the guaranteed gain margin is[
1

OD
,∞
]

=

[
γ

1 + γ
,∞
]
. (10)

Combining the above cases, we have the following result.

Theorem 1. Consider the unity feedback system in Fig. 1.
If the H∞ norm of the error transfer function is less than
γ: ∥∥∥∥ 1

1 +G(s)

∥∥∥∥
∞
< γ, (11)

then the guaranteed phase margin at the loop breaking
point ‘m’ is:

φ = 2 sin−1
(

1

2γ

)
(12)

The guaranteed gain margin is:

gm =


[

γ
γ+1 ,

γ
γ−1

]
, for γ > 1[

γ
γ+1 ,∞

]
, for γ ≤ 1

(13)

3. PROBLEM FORMULATION

Consider now the control system in Fig. 5.

C(s) P (s)
r(t) e(t) u(t) y(t)

−

Fig. 5. Unity feedback control loop.

r(t) is the reference signal, e(t) is the error signal, u(t)
is the input signal (to the plant), y(t) is the output
signal, P (s) is the plant transfer function and C(s) is the
controller transfer function which we will consider to be
either PI or PID.

The problem to be solved in this paper is: find the set Sγ
of all stabilizing PI or PID controllers satisfying∥∥∥∥ 1

1 + P (s)C(s)

∥∥∥∥
∞
< γ. (14)

4. MAIN RESULTS

In this section we develop the computation of Sγ for PI
and PID controllers. Note that (14) is equivalent to
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|1 + P (jω)C(jω)| > 1

γ
, ∀ ω ∈ [0,∞). (15)

4.1 Computation of Sγ for PI controllers

PI controllers have the form:

C(s) = kp +
ki
s
. (16)

Write

P (jω) = Pr(ω) + jωPi(ω), (17)

C(jω) = kp − j
ki
ω
. (18)

Substituting (17) and (18) in (15) we get

|1 + kpPr(ω) + kiPi(ω)︸ ︷︷ ︸
L0(ω)

+j(ωkpPi(ω)− ki
ω
Pr(ω)︸ ︷︷ ︸

L1(ω)

)| > 1

γ

(19)
which can be rewritten as

(1 + L0(ω))
2

+ L2
1(ω) >

1

γ2
(20)[

Pr(ω) Pi(ω)

ωPi(ω) −Pr(ω)ω

] [
kp
ki

]
=

[
L0(ω)
L1(ω)

]
. (21)

(21) has a unique solution if

|P (jω)| 6= 0, (22)

that is the plant has no jω axis zeros.

Assuming (22), (21) can be solved:[
kp
ki

]
=

1

|P (jω)|2

[
Pr(ω) ωPi(ω)
−ω2Pi(ω) −ωPr(ω)

]
︸ ︷︷ ︸

T (ω)

[
L0(ω)
L1(ω)

]
(23)

(20) represents the outside of a circle Cγ of radius 1
γ in the

(L0, L1) plane centered at (−1, 0):

L0

L1

−1
o

1
γ

Admissible

region

Cγ

Fig. 6. The Cγ circle.

Let Eγ(ω) denote the mapping through (23) of the circle
Cγ :

ki

kp

o′

Eγ(ω)

Admissible

region

Fig. 7. The Eγ(ω) ellipse.

Lemma 1. Condition (15) at a fixed ω is equivalent to
kp, ki lying in the complement of the interior of the axis

parallel ellipse Eγ(ω) with center o′ at (−ω
2Pi(ω)

|P (jω)|2 ,
−Pr(ω)
|P (jω)|2 ),

principal axes 2
γ|P (jω)| ,

2ω
γ|P (jω)| .

Proof. For each ω ≥ 0, (19) is∣∣∣∣1 + (Pr(jω) + jωPi(jω))(kp − j
ki
ω

)

∣∣∣∣ > 1

γ

⇔ (1 + Pr(jω)kp + Pi(jω)ki)
2

+

(
ωPi(jω)kp − Pr(jω)

ki
ω

)2

>
1

γ2
. (24)

After some algebra we obtain

(ki − c1)
2

a2
+

(kp − c2)
2

b2
> 1 (25)

where

c1 =
−ω2Pi(ω)

|P (jω)|2
, c2 =

−Pr(ω)

|P (jω)|2
,

a =
ω/γ

|P (jω)|
, b =

1/γ

|P (jω)|
.

(26)

2

Fig. 8. Eγ(ω) and Sγ(ω).

Fig. 9. Sγ .

For a fixed ω, let Sγ(ω) denote the intersection of the
stabilizing set S with the exterior of the ellipse Eγ(ω) as
shown in Fig. 8. In other words,
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Sγ(ω) = S \ Eγ(ω) ∀ ω ∈ [0,∞). (27)

Since (15) must hold for all ω,

Sγ =

∞⋂
ω=0

Sγ(ω) (28)

as shown in Fig. 9.

We state this result as the following theorem.

Theorem 2. In the unity feedback control loop, suppose
that the plant P (s) has no jω axis zeros. All stabilizing
PI controllers C(s) satisfying the H∞ norm bound of γ on
the error transfer function is the set Sγ :

Sγ =

∞⋂
ω=0

Sγ(ω). (29)

Proof. Sγ(ω) is the admissible set for each ω and the
controller must satisfy the H∞ norm for all frequencies.
Hence we have the set Sγ by intersecting the admissible
sets Sγ(ω) for all ω. 2

Note that S can be determined using the concept of
signature developed in Bhattacharyya et al. (2009). If
Eγ(ω) is outside of S then Sγ(ω) = S. If S ⊂ Eγ(ω) then
Sγ is empty.

4.2 Computation of Sγ for PID controllers

PID controllers are of form:

C(s) = kp +
ki
s

+ kds. (30)

Substituting s = jω, we have

C(jω) = kp − j
1

ω

(
ki − ω2kd

)
. (31)

ki

kp kd

Eγ(ω)

Admissible

region

Fig. 10. The Eγ(ω) elliptic cylinder.

Replace ki in (19) with k′i = ki−ω2kd. By analysis similar
to the PI case, it is easy to show that (15) implies that the
controller parameters kp, ki, kd must lie in the exterior of
Eγ(ω) described by:(

ki − ω2kd − c1
)2

a2
+

(kp − c2)
2

b2
> 1 (32)

which is an elliptic cylinder with the center lying on the
line {

ki − ω2kd = −ω2Pi(ω)
|P (jω)|2 ,

kp =
−Pγ(ω)
|P (jω)|2 ,

(33)

and principal axes 2
γ|P (jω)| ,

2ω
γ
√
ω4+1|P (jω)| .

As before,

Sγ(ω) = S \ Eγ(ω) ∀ ω ∈ [0,∞) (34)

and

Sγ =

∞⋂
ω=0

Sγ(ω). (35)

The details of the computation are omitted.

Remark 2. We can consider the H∞ norm with a weight-
ing function W (s) multiplied by the error transfer func-
tion in (14). In this case, replace γ in (15) by γ′ where
γ′ = γ

|W (jω)| . Then, the principal axes of the axis parallel

ellipse Eγ(ω) are subject to change by W (jω). However,
the derivation of the equations in this section remains the
same.

Remark 3. If C(s) is replaced by Cτ (s) =
kps+ki+kds

2

s(τs+1) ,

then Cτ (s)P (s) = C(s) 1
τs+1P (s). Since τ can be fixed a

priori, we can replace Pr(jω) and Pi(jω) in (17) by

P ′r(jω) =
Pr(jω) + τω2Pi(jω)

1 + τ2ω2

P ′i (jω) =
Pi(jω)− τPr(jω)

1 + τ2ω2
.

Then, the controller design can be carried out in a similar
manner.

5. EXAMPLES

We present two examples to illustrate the steps to find the
set Sγ .

Example 1. Consider the second order plant and the PI
controller:

P (s) =
s− 2

s2 + 4s+ 3
, C(s) = kp +

ki
s
. (36)

Chosen for Nyquist plots

-4 -3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

Fig. 11. Sγ for γ = 1.6, 2, 4, 8 with the stabilizing set.

The stabilizing set was first computed for the plant and the
PI controller given in (36). Family of ellipses Eγ(ω) were
drawn by sweeping over ω and Sγ were found accordingly
for γ = 1.6, 2, 4 and 8. In Fig. 11 we observed that Sγ
were contained in the stabilizing set S and Sγ1 ⊂ Sγ2 if
γ1 < γ2. So, Sγ for γ ∈ [1, ∞) is the telescoping series of
sets. If kp, ki were chosen from sets Sγ , the Nyquist plot
must stay outside of the critical point −1 + j0 with the
minimum distance of 1/γ. We chose some boundary points
in Sγ that were inside the stabilizing set S where γ = 2
and draw the Nyquist plots in Fig. 12. Each Nyquist plot
was at least 0.5 away from the critical point.
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Fig. 12. Nyquist plots with kp, ki along the curve of γ = 2.
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Fig. 13. Guaranteed gain and phase margin of the bound-
ary points of Sγ for γ = 2

Following Theorem 1, the guaranteed gain margin was[
γ

γ + 1
,

γ

γ − 1

]
=

[
2

3
, 2

]
, (37)

and the guaranteed phase margin φ was

φ = 2 sin−1
(

1

2γ

)
= 28.955o (38)

for γ = 2. Fig. 13 shows the guaranteed gain and phase
margins when we choose kp and ki from Sγ for γ = 2.
For all controllers achieving the same H∞ norm at the
boundary of Sγ , there is a trade off between gain and phase
margins. When higher gain margin is desired, one should
sacrifice some phase margin and vice versa. Nevertheless
with the H∞ norm we get the guaranteed gain and phase
margins calculated in Eqs. (37) and (38).

Example 2. Consider a rational transfer function given in
Blanchini et al. (2004) and the PID controller:

P (s) =
10s3 + 9s2 + 362.4s+ 36.16

2s5 + 2.7255s4 + 138.4292s3 + 156.471s2

+ 637.6472s+ 360.1779
(39)

C(s) = kp +
ki
s

+ kds. (40)

The stabilizing set was computed using the signature
method as shown in Fig. 14. We adopted kd = 9 as in
Krajewski and Viaro (2012) and computed Sγ for γ = 1

Fig. 14. The stabilizing set in kp, ki, kd space using the
signature method.

Fig. 15. Sγ and family of ellipses Eγ for γ = 1 in kp, ki
plane with kd = 9 .

in kp, ki plane. Fig. 15 shows the Sγ and the family of
ellipses.

We observed that the stabilizing set with kd = 9 was
unbounded in kp, ki plane. However, the Sγ for γ = 1
in the same plane was bounded. For the high values of
ω the major and minor axes of the ellipses grow as the
centers c1 and c2 in (26) go away from the origin. So, we
suggest that the family of ellipses be computed for high
enough values of ω to get the exact set Sγ .

Clearly in this case, Sγ is not empty and the H∞ norm
condition less than γ = 1 provides very good robustness,
namely [0.5,∞] gain margin and 60o phase margin. Thus,
all of the points in Sγ guarantee such good robustness.
In fact, since the open loop transfer function P (s)C(s) is
strictly proper, the Nyquist plot of P (jω)C(jω) goes to 0
as ω →∞ and so every point in Sγ achieves the same H∞
norm.

Time response considerations

So far we have discussed stability and robustness. However,
the design of a controller should pay attention to the time
response considerations. In order to demonstrate, we chose
the following three design points:
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Fig. 16. Nyquist diagram for P (s)C1(s) (red), P (s)C2(s)
(green) and P (s)C3(s) (blue).
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Fig. 17. Step responses for the closed loop systems of
P (s)C1(s) (red), P (s)C2(s) (green) and P (s)C3(s)
(blue). 

C1(s) = 185 + 2986
s + 9s,

C2(s) = 20 + 800
s + 9s,

C3(s) = 19 + 200
s + 9s.

(41)

The first point has the maximum ki value in Sγ , the second
is adopted from Krajewski and Viaro (2012) and the third
is an arbitrary point from the boundary of Sγ with a
relatively lower ki value.

The Nyquist plots in Fig. 16 confirms that all three design
points satisfy the robustness condition. The step responses
in Fig. 17 shows that the three controller designs result
in different time responses in terms of overshoot and
settling time. While C1(s) and C2(s) have highest and
intermediate integral gains, C3(s) provides much shorter
settling time and lesser overshoot than the other two
controllers do.

The integrator in the controller provided zero steady state
error and we found all stabilizing controllers achieving pre-
scribed H∞ norm of the error transfer function. While the
robustness and zero steady state error could be achieved
by the proposed method, one should also consider the

quality of the transient response when tuning the PID
parameters within the set Sγ . Thus, the PID controller
design for better transient response within the same degree
of robustness is an important area of research.

6. CONCLUDING REMARKS

The results of this paper could be extended to discrete
time and time-delay systems. Another important area of
research is the extension of these results to multivariable
systems.
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