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Abstract: This paper presents a new technique for the design of an optimal fractional order
PID controller for Load frequency control (LFC) in power systems. The proposed approach
utilizes a unique combination of Big Bang Big Crunch (BB-BC) algorithm which is a recent soft
computing technique and internal model control (IMC) scheme for the design of a fractional
order PID controller and it also unifies the notion of order diminution with controller design.
A detailed mathematical description of the proposed approach is elucidated in the paper.
Since BB-BC is a stochastic search technique, hence a thorough statistical analysis of the
response specifications is performed. To demonstrate the effectiveness of the proposed approach,
an exhaustive comparative analysis in terms of time response specifications and performance
indices is also carried out. It is inferred that the proposed approach is highly efficient tool and
outperforms the recent techniques in the literature.

Keywords: Load frequency control, Statistical analysis, Big Bang Big crunch, Integral
performance indices, PID control, Parameter uncertainty

1. INTRODUCTION

The performance of a large scale power system undergoes
deterioration owing to the degradation in power quality
caused by load perturbations which results in deviation
in tie-line power interchange and fluctuation in area fre-
quency. This necessitates the use of Load frequency control
(LFC) to withstand load disturbances, parameter uncer-
tainties and for the minimisation of unscheduled power
flow between interconnected areas (Pandey et al. (2013)).
Thus, LFC can be regarded as an optimization and a ro-
bustness control problem. Various advanced control strate-
gies are proposed in literature like optimal control (Cavin
et al. (1971)), sliding mode control (Vrdoljak et al. (2010)),
PID control (Moon et al. (2001)), Internal model control
(IMC) (Tan (2010), Saxena and Hote (2013)), etc. How-
ever, all these approaches encounter limitation of sluggish
disturbance attenuation, especially in the presence of pa-
rameter uncertainties and load disturbances.

These days, the theory of fractional calculus has witnessed
a tremendous popularity in system engineering and the
control practitioners are closely focussing on the applica-
tion of fractional calculus in the design of PID controllers.
Fractional-order (FO) systems have attracted increasing
interests, since many real-world physical systems are bet-
ter characterized by FO differential equation (Monje et al.
(2010)). A fractional order PID (FOPID) controller pro-
vides additional flexibility in the design phase over a simple
integer order (IO) PID structure as it has five tuning
parameters i.e., Kp, Ki , Kd, λ and µ instead of three
in a classical IO controller. Various ways of tuning a

FOPID controller are proposed in the literature (Doicin
et al. (2016), Valério and da Costa (2006)). Besides these
techniques, soft computing algorithms can also be used
to tune a FOPID controller (Herreros et al. (2002)). It is
pertinent to mention here that the different soft computing
techniques require a specification on the bound of the
solution space before their application to a problem. Until
now, the bounds were intutively chosen, whereas in this
paper IMC scheme will aid us in obtaining a suitable
boundary of the search space. The choice of the upper
and lower bounds on the optimization variables play an
important role in the quality of the solution obtained and
the rate of convergence of the solution.

In this paper, a new technique is presented for the tuning of
the parameters of a FOPID controller via BBBC algorithm
and IMC scheme for single area power system comprising
of a non-reheated turbine. The single area power system
is of third order, hence it is first reduced into second order
via BBBC optimization algorithm (Erol and Eksin (2006)).
In the next step, IMC is applied on the reduced order
plant to obtain the parameters of the PID controller. The
parameters, hence obtained are used to specify a suitable
bound on the parameters of the FOPID controller to be
tuned via BBBC algorithm. It aids in faster convergence
of the solutions and an acceptable optimal solution can be
obtained in as few as 10 iterations since we have chosen
a tighter solution space via IMC scheme. The reason of
choosing BBBC algorithm over other similar metaheuristic
algorithms is its simplicity and proven track record of
achieving more accurate results in order diminution and
controller design problems (Desai and Prasad (2013), Bi-
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Fig. 1. Linear model of a single-area power system

radar et al. (2016)). Since BBBC is a stochastic optimiza-
tion technique, hence a thorough statistical analysis of the
controller parameters and the time response specifications
is conducted to show the effectiveness of the proposed tech-
nique. Besides this, an exhaustive comparative analysis is
done with respect to the recently developed techniques
of LFC and the superiority of the proposed approach is
shown in terms of faster disturbance rejection and the
lower values of the integral error indices. The beauty of
the proposed approach is that it combines a conventional
technique such as IMC and a recent metaheuristic tech-
nique such as BBBC to achieve a good quality optimal
solution for the given problem quickly. Once a controller is
designed, it is crucial to check if it is robust to the presence
of parametric uncertainty in the system, thus robustness
analysis is also carried out in the paper. The results convey
the efficiency and powerfulness of the proposed technique.

2. PROBLEM STATEMENT

A power system is typically a large-scale system consisting
of complex nonlinear dynamics. However, for small load
changes, it can be appropriately typified by a linear model,
linearized about the operating point. The single area power
system for LFC design consists of a governor Gg(s), non-
reheated turbine Gt(s), load and machine Gp(s) and the
droop characteristics as illustrated in Fig.1. The dynamics
of the individual components are described as follows:

Gg(s) =
1

Tgs+ 1
(1)

Gt(s) =
1

Tts+ 1
(2)

Gp(s) =
K

Tps+ 1
(3)

The nomenclature of different system parameters is given
in Table 1.

The system model can be characterized by the following
transfer function:

∆f(s) = Tu(s)∆u(s) + Td(s)∆Pd(s) (4)

where

Tu(s) =

(
Gg(s)Gp(s)Gt(s)

1 +
Gg(s)Gp(s)Gt(s)

R

)
(5)

Td(s) =

(
Gp(s)

1 +
Gg(s)Gp(s)Gt(s)

R

)
(6)

Table 1. Nomenclature: Power system param-
eters

∆f Incremental frequency deviation (Hz)
K Electric system gain

∆Pd Load disturbance (p.u.MW)
R Speed regulation due to governor action (Hz/p.u.MW)
Tg Governor time constant (s)
Tp Electric system time constant (s)
Tt Turbine time constant (s)

Equation (4) clearly explains that LFC is primarily a
disturbance rejection problem, in which the goal is to
design a robust FOPID controller for a single area power
system such that the effect of the load disturbances on ∆f
is minimum. The FOPID controller to be designed is of the
form as given below:

C(s) = Kp +
Ki

sλ
+Kds

µ (7)

Here Kp,Ki and Kd denote the proportional, gain, integral
gain and the derivative gain and λ and µ are the fractional
orders of the integral and derivative term respectively.

3. PROPOSED APPROACH

The proposed technique can be segregated into broadly
two major steps. The first step involves the design of a
IMC-PID controller for the power system. In the second
step, we use BBBC optimization algorithm to design an
optimal FOPID controller by using the PID parameters
obtained in the first step as a means to specify a bound
on the solution space.

The detailed mathematical formulation of the proposed
technique is explained below.

3.1 Internal Model Control

Equations (1)-(6) show that even a single area power
system is a third order system. Hence, we reduce it into
second order before the application of IMC approach.
In this paper, the order diminution is performed via
BBBC algorithm since it is simple to understand and
gives reduced order model which closely resembles the
original system (Biradar et al. (2016)). Let the reduced
order model be given by

GR(s) =
a0 + a1s

b0s2 + b1s+ b2
(8)

where aj , j = 0, 1 and bi, i = 0, 1, 2 are constant coeffi-
cients of s, and bi > 0.

For the LFC problem, it is observed that the reduced
order model obtained via BBBC is a non minimum phase
system, thus we consider a1 < 0. If a1 ≥ 0, a similar type
of procedure can be applied as given herein.

Equation (8) can be re-written as

GR(s) =
a0(1 + a2s)

b0s2 + b1s+ b2
(9)

where a2 = a1
a0
< 0.

After obtaining the reduced order model, we apply IMC
scheme to the LFC problem. Fig. 2 and Fig. 3 illustrate the
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Fig. 2. IMC control scheme

Fig. 3. IMC control scheme in classical feedback form

block diagrams of basic IMC structure and IMC structure
in classical feedback form respectively. The plant model is
factorized as

GR(s) = GR−(s)GR+(s) (10)

where GR−(s) and GR+(s) represent the minimum and
non-minimum phase part respectively. Thus,

GR−(s) =
a0

b0s2 + b1s+ b2
(11)

GR+(s) = 1 + a2s (12)

Next, a filter is chosen of the form as given in (13).

F (s) =
1

(1 + δs)k
(13)

Here, δ is intutively tuned. k is chosen such that IMC
controller is physically realizable. For this problem, we
consider k = 1.

Finally, the IMC controller is given by

Q(s) = F (s)G−1R−(s) =
b0s

2 + b1s+ b2
a0(1 + δs)

(14)

In the classical feedback form, the PID controller can be
written as

CIMC(s) =
Q(s)

1−GR(s)Q(s)
(15)

On substitution of values of GR(s) and Q(s) from equa-
tions (9) and (14), we obtain

CIMC(s) =
b1

a0δ − a1
+

b1
a0δ − a1

1

s
+

b0
a0δ − a1

s (16)

Equation (16) can be re-written as

CIMC(s) = Kp +Ki

(
1

s

)
+Kds (17)

Table 2. Nomenclature: BBBC parameters

N Population size
Ψ Constant parameter which limits size of solution space
L Lower bound of the variables in solution space
U Upper bound of the variables in solution space

maxite Maximum number of iterations
iter Count of number of iterations
R Uniformly distributed random numbers in (0,1)

where Kp = b1
a0δ−a1 ,Ki = b2

a0δ−a1 and Kd = b0
a0δ−a1 .

Thus, we have obtained the parameters of a IMC-PID
controller. In the next subsection, these parameters will
aid us in choice of the bounds of the solution space for
FOPID via BBBC algorithm.

3.2 BBBC optimization algorithm

BBBC is a global heuristic search technique discovered
by Erol and Eksin based on the theory of evolution of
the closed universe in the field of physics and astronomy.
The BBBC algorithm involves two phases - BB phase, in
which the candidate solutions are spread at random in
the search space and the BC phase in which candidate
solutions are drawn into a single representative point
known as the center of mass (Erol and Eksin (2006)).
The algorithm starts by the random generation of an
initial population of feasible candidates. This uniform
randomness is equivalent to energy dissipation in nature.
The BB phase represents the search space exploration
process, while the BC results in best solution exploitation.
Table 2 depicts the nomenclature of BBBC parameters.
The steps of standard BBBC algorithm are outlined as
follows:

Step 1 Initialise the BBBC parameters i.e., N , Ψ,maxite
and set ′iter′ = 1. Select the lower bound of the FOPID
parameters as L = [p−1Kp p−1Kd p−1Ki 0 0] and
the upper bound as U = [pKp pKd pKi 2 2]. Here
Kp Ki and Kd are the PID parameters computed in (17).
λ and µ ∈ (0,2). If λ, µ ≥ 2, the resulting controller would
be of higher order and of a different form as compared
to conventional PID controller. The factor p is intutively
tuned.

Step 2 Generate N candidate solutions via uniform ran-
dom distribution. This phase is the Big Bang phase (BBP).
Let xi be the vector describing the position of the ith

candidate solution. Thus, the elements of xi are generated
as

xi = L+ (U − L) ◦R, i = 1, 2, ..., N (18)

Step 3 Compute the fitness function matrix for the N
candidate solutions as F = [f1 f2 ... fN ]T where,
f i = J(xi), f

i ∈ IR, i = 1, 2, ...N and J(xi) is the
performance index function for the ith candidate solution.

Step 4 Sort the fitness values in ascending order of their
magnitudes. Let the least fitness value be represented by
f iter.

Step 5 Compute the centre of mass of the given candidate
solutions. This phase is called Big crunch phase (BCP).

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

612



Citer =

∑n
i=1

xi

fi∑n
i=1

1
fi

(19)

Since our objective is the computation of the minimum
value of the function, the algorithm uses the reciprocal of
the function as a measure of fitness. Hence, the weighted
mean of the candidate solutions is biased towards the
region, where the performance function has its least value.

Step 6 Next, N new candidates are generated in the
search space based on the knowledge of the centre of mass
computed in the previous iteration using (20)

xiter+1
i = Citer +

riΨ(U − L)

iter + 1
(20)

Here ri is a normal random number which is unique for
every candidate solution, such that ri ∈ (0, 1].

Step 7 Compute the fitness function values for the new
set of candidate solutions generated in Step 6. Then, go
to Step 4. Thus, the successive BB phase and BC phase
steps are carried out repeatedly until a stopping criterion
has been met.

Step 8 When the maximum number of iterations have
reached, we sort the least fitness values computed in Step 4
in an increasing order and find the solution corresponding
to the least value of the performance index. Thus, the
solution having lowest fitness value gives us the optimum
FOPID parameters.

4. NUMERICAL STUDIES

Consider a power system plant model with a non-reheated
turbine and droop characteristics as depicted in Fig.
1. The simulations are performed in MATLAB R2016a
environment by using FOMCON toolbox for fractional
order systems (Tepljakov et al. (2013)). The typical values
of the LFC parameters are expressed in (21)

K = 120, Tg = 0.08, Tp = 20, Tt = 0.3, R = 2.4. (21)

Using (21), the plant model in transfer function form is
evaluated as

G(s) =
250

s3 + 15.88s2 + 42.46s+ 106.2
(22)

Equation (22) represents a third order underdamped sys-
tem with poles at s = −13.2858, −1.2971 + 2.5122i,
−1.2971 − 2.5122i. The proposed IMC scheme requires a
reduced second order transfer function as the plant model.
The reduced order model obtained via BBBC is given as

GR(s) =
−5s+ 96.57

5.4s2 + 14s+ 41.05
(23)

It is obvious from Fig. 4 that the step response of the
reduced order model is almost fully coincident to that of
the full order system. The corresponding value of ISE is
6.7653× 10−5.

The conventional IMC-PID controller (δ = 0.1) is obtained
using equations (9)-(17) and is given by

CIMC(s) = 2.0198 + 5.9923

(
1

s

)
+ 0.7791s (24)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time(s)

0

0.5

1

1.5

2

2.5

3

A
m

p
lit

u
d

e

Original system

Reduced system

Fig. 4. Step response of the original system and the
reduced order model obtained via BBBC algorithm

The typical parameters of the BBBC for the design of
FOPID controller are taken as follows

N = 100,Ψ = 0.25,maxite = 100, p = 10 (25)

Since p = 10, and using (24) in the Step 1 of subsection
3.2, we get L = [0.20198 0.59923 0.07791 0 0] and U =
[20.198 59.923 7.791 2 2].

The final FOPID-BBBC controller having the least value
of ISE obtained via the proposed technique is given by

CBBBC(s) = 18.0695 +
32.8666

s0.6949
+ 4.6579s1.3258 (26)

Fig. 5. illustrates the comparison of the disturbance re-
jection response for the nominal case of the proposed
approach with Saxena’s PID (Saxena and Hote (2017)),
Sondhi’s FOPID (Sondhi and Hote (2014)), Liu Routh
PID, Liu Pade PID (Saxena and Hote (2013)) and Tan’s
IMC-PID (Tan (2010)). A step load disturbance ∆Pd =
0.01 is applied to the system at t = 2s. It can be ob-
served from Fig. 5 that the rejection of load disturbance
is faster and accompanied with a minimal undershoot for
the proposed scheme. The performance of the controller
is quantified via various integral error indices like integral
square error (ISE), integral absolute error (IAE) and in-
tegral time absolute error (ITAE). A thorough statistical
analysis of the performance indices is performed in Table 3.
In Table 3, the undershoot and overshoot are defined as the
peak negative deviation and the peak positive deviation
in the frequency respectively. Since, we had chosen a tight
solution space for BBBC optimization algorithm via IMC
control scheme, thus the variance and standard deviations
of the time response specifications and controller param-
eters are extremely small in magnitude. A closer look
reveals that even the worst case response is nearly optimal
and one could stop the BBBC algorithm after as less than
10 iterations and be assured of a nearly optimal response,
thus greatly reducing the simulation time.

The uncertainty in system parameters is a crucial issue in
the modern day complex power systems. Thus, it of utmost
importance that the LFC controller is robust to the effect
of parametric uncertainty in the system. To investigate
the robustness of the controller, the LFC parameters are
perturbed by ±50% in the same manner as expressed in
Sondhi and Hote (2014), i.e.,
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Table 3. Performance Parameters obtained for FOPID via BBBC

Parameter Min Max Mean Var Std

Kp 17.91532088 18.13605498 18.04203804 1.93484770×10−3 4.39869038×10−2

Ki 32.66146045 33.12713077 32.86819001 8.45057421×10−3 9.19270048×10−2

Kd 4.60408272 4.68989749 4.642443733 3.30024957×10−4 1.81665890×10−2

λ 0.68820845 0.71083348 0.69851186 1.86954940×10−5 4.32382863×10−3

µ 1.32108221 1.34214655 1.33199057 2.00500273×10−5 4.47772569×10−3

ts 4.04151923 4.2567147 4.16944216 1.99846977×10−3 4.47042478×10−2

tr 3.22668747×10−4 3.63052749×10−4 3.44575487×10−4 6.31616028×10−11 7.94742743×10−6

Undershoot 9.03392500×10−4 9.54825200×10−4 9.29050369×10−4 1.1046396×10−10 1.05101837×10−5

Overshoot 1.86539200×10−5 3.37651200×10−5 2.60463279×10−5 8.49926057×10−12 2.915349133×10−6

ISE 1.58440974×10−7 1.60148063×10−7 1.59390015×10−7 1.57634433×10−19 3.97032030×10−10

IAE 5.99981429×10−4 6.21553431×10−4 6.10587461×10−4 2.13431837×10−11 4.61986836×10−6

ITAE 2.35540422×10−3 2.55441129×10−3 2.47971083×10−3 1.03848684×10−9 3.22255619×10−5

Table 4. Comparison of performance indices for +50% bound on LFC parameters

Nominal Upper bound

Design method ISE IAE ITAE ISE IAE ITAE

Proposed FOPID 1.5842×10−7 6.1078×10−4 2.4937×10−3 2.7111×10−7 6.8813×10−4 2.6529×10−3

Saxena’s PID (2017) 1.4394×10−6 1.0930×10−3 3.3193×10−3 9.0176×10−7 9.4191×10−4 3.0217×10−3

Sondhi’s FOPID (2016) 1.4051×10−5 4.2337×10−3 1.3574×10−2 9.5663×10−6 4.2132×10−3 1.4148×10−2

Liu Pade (2013) 8.4992×10−4 8.1829×10−2 4.8396×10−1 8.4674×10−4 7.9997×10−2 4.7937×10−1

Liu Routh (2013) 8.7026×10−4 8.1662×10−2 4.8317×10−1 8.9553×10−4 8.1173×10−2 4.8120×10−1

Tan’s IMC-PID (2010) 1.3818×10−4 1.5733×10−2 4.5986×10−2 9.5938×10−5 1.5703×10−2 5.1868×10−2

Table 5. Comparison of performance indices for -50% bound on LFC parameters

Nominal Lower bound

Design method ISE IAE ITAE ISE IAE ITAE

Proposed FOPID 1.5842×10−7 6.1078×10−4 2.4937×10−3 2.7105×10−7 6.8817×10−4 2.6528×10−3

Saxena’s PID (2017) 1.4394×10−6 1.0930×10−3 3.3193×10−3 4.4720×10−6 1.8544×10−3 4.9941×10−3

Sondhi’s FOPID (2016) 1.4051×10−5 4.2337×10−3 1.3574×10−2 3.0642×10−5 6.2275×10−3 1.8801×10−2

Liu Pade (2013) 8.4992×10−4 8.1829×10−2 4.8396×10−1 9.0271×10−4 8.3356×10−2 4.8708×10−1

Liu Routh (2013) 8.7026×10−4 8.1662×10−2 4.8317×10−1 9.1782×10−4 8.3285×10−2 4.8710×10−1

Tan’s IMC-PID (2010) 1.3818×10−4 1.5733×10−2 4.5986×10−2 2.5167×10−4 2.0258×10−2 5.9438×10−2
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Proposed FOPID
Saxena's PID (2017)
Sondhi's FOPID (2016)
Liu Routh (2013)
Liu Pade (2013)
Tan's IMC-PID (2010)

Fig. 5. Comparison of response of non-reheated power sys-
tem using various controllers for nominal parameters.

K ∈ [60, 180], R ∈ [1.2, 3.6], Tg ∈ [0.04, 0.12],
Tp ∈ [10, 30], Tt ∈ [0.15, 0.45].

The proposed controller is implemented on the uncer-
tain system and the corresponding disturbance rejection
response is shown in Fig. 6 and Fig. 7 respectively. It
can be seen that the proposed FOPID controller is able
to effectively withstand parameter uncertainties and the
frequency deviations settle to zero in minimum time with
least overshoot for the proposed controller in comparison
to other techniques of controller design. Table 4 and Table

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

∆
f

Proposed FOPID
Saxena's PID (2017)
Sondhi's FOPID (2016)
Liu Routh (2013)
Liu Pade (2013)
Tan's IMC-PID (2010)

Fig. 6. Comparison of response of power system using
various controllers for lower bound parameters.

5 enlist the performance indices for the nominal model,
+50% and -50% uncertain model respectively. It is evident
from the low values of ISE, IAE and ITAE, that the
FOPID controller designed via the proposed scheme is
capable of handling uncertainty in the plant parameters
and reject the load fluctuations efficiently. Thus, we can
conclude that the proposed scheme outperforms the recent
techniques and is clearly the improved design for load
frequency control.
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Fig. 7. Comparison of response of power system using
various controllers for upper bound parameters.

5. CONCLUSION

This work presents the design of an optimal FOPID con-
troller for the single area non reheated turbine power sys-
tem via BBBC optimization algorithm and IMC scheme.
The beauty of the proposed approach lies in the fast
convergence of BBBC algorithm due to a suitable choice
of the solution space and the extremely fast disturbance
rejection capability accompanied by minimal overshoot
and undershoot of the FOPID controller. The proposed
scheme clearly outperforms the recent techniques of LFC
controller design fron the literature. Due to space limita-
tions, the proposed technique is demonstrated only for a
single area power system with non-reheated turbine. The
proposed work can be extended to the case of a power
system with reheated turbine and hydro turbine. It may
also be extended to a interconnected system, though in
that case each control area is controlled independent of
the other areas. Hence, a similar technique is applicable to
a multi area interconnected system as well.
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