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Abstract: In this paper, a PID tuning method for integrating processes having time delay and inverse 

response is presented. The method is based on the stability boundary locus method and geometrical center 

(WGC) approach. The systematic procedure of the method is first to obtain the stability region in the PI 

controller parameters (proportional gain: kp and integral gain: ki) plane according to derivative gain (kd) 

using the stability boundary locus method and then to find the weighted geometrical center point of this 

region. The WGC controllers are obtained by using different values of kd. Simulation examples have 

demonstrated that PID controller designed by using the proposed method gives good results. 
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

1. INTRODUCTION 

The PID controller is the most commonly used controller 

structure in industrial applications. However, even for linear 

systems, fundamental stability problems are still an area of 

investigation in control theory. This is especially true if the 

system includes a time delay (Hohenbichler, 2009). Their 

common utilization in practice motivates researchers in 

developing better PI/PID adjustment methods (Chidambaram, 

2000; Chidambaram and Sree, 2003; Lee, 2008; Sree et al., 

2004; Shamsuzzoha and Lee, 2008; Silva et al., 2005; Taylor 

et al., 2006; Wang and Cluett, 1997). Some important studies 

can be seen in (Åström and Hagglund, 2001; Ho et al., 1995; 

Ho et al., 1998; Hohenbichler, 2009; Oliveira et al., 2009; 

Silva et al., 2005; Söylemez et al., 2003; Wang et al., 2016; 

Wang et al., 1999; Zhuang and Atherton, 1993). On the other 

hand, one of the complicated problems faced by engineers in 

industry is to design the PI/PID controller for integrating 

processes, whose dynamics also possess both time delay and 

inverse response characteristics. When the difficulty of 

controlling the integrating systems with time delay and inverse 

response and the simplicity of the PID control algorithm are 

considered together, the control of these processes requires a 

special attention (Lee, 2008; Normey and Camacho, 2007). 

Most frequently encountered example of such systems in 

practice is a boiler steam drum (Pai et al., 2010). Despite the 

common usage of boilers in the process industry, studies for 

developing control of such systems are relatively few in the 

literature. Åström and Bell have presented a non-linear 

dynamic model for natural circulation boilers (Åström and 

Bell, 2000). Kim and Chio proposed a model based on the 

principles of momentum and energy conservation (Kim and 

Choi, 2005). However, for the control of boilers, an 

approximate dynamic model for practical control purposes is 

needed more than a complicated and precise model. For the 

dynamics of such systems, Luyben proposed the inverse 

responded open-loop transfer function given in Equation 1 

(Luyben, 2003). 
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Accordingly, system parameters are determined by a model 

identification method based on open loop set point response 

that is obtained by the Matlab software. Luyben proposed a 

PI/PID controller tuning method in frequency domain by the 

Matlab software, as well (Luyben, 2003). But it is a significant 

drawback that this method needs the solution of synchronous 

non-linear algebraic equations. However, as a model-based 

approach the direct synthesis (DS) design method allows to 

directly determine the closed-loop behaviours desired from the 

system model (Chen and Seborg, 2002). Pai et al. expressed 

the control parameters based on obtaining the optimum 

adjustment parameter λ for the minimum IAE (integral 

absolute error) criterion and system model based DS-design 

using the golden ratio searching technique (Pai et al., 2010). 

Furthermore, it is indicated that the tuning method given in 

(Pai et al., 2010) provides better performance results for 

load/disturbance effects than Luyben’s method. However, the 

method is based on minimum IAE criterion which is obtained 

by the golden-section searching method and hence an iterative 

design process. Accordingly, the method is not appropriate for 

practical design purpose.  

Recently, a design method is given for the PI control of time-

delay systems using the weighted geometrical center (WGC) 

(Onat, 2013) of stability region obtained from stability 

boundary locus method (Tan, 2005). The WGC method is 
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based on the calculation of the weighted geometric center of 

the region of stabilizing controller parameters. The controller 

designed for WGC point generally provides good unit step 

response although it is not theoretically proved. In this study, 

the WGC method is extended to PID control of the inverse 

responded and time-delayed integrating processes. The design 

is fulfilled by using of derivative gain (kd) as a sweep 

parameter. Simulation examples are given to investigate 

application of the method presented. The robustness of the 

proposed method is also shown by applying to an integrating 

transfer function with time delay and inverse response 

including parametric uncertainty. 

This study is organized as follows. The second section 

explains PID tuning based on the stability boundary locus and 

the WGC methods for an integrating process with inverse 

response and time delay. The third section presents three 

simulation examples. Finally, discussion and results are given 

in the fourth section. 

2. THE STABILITY BOUNDARY LOCUS METHOD AND 

THE WGC CONCEPT 

In order to explain the method, an integrating process with 

time delay and inverse response is used. The process is 

described by (2). The considered closed loop system with PID 

controller is shown in Fig. 1. Where, C(s) is the transfer 

function of the PID controller and given by (3). 
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Fig. 1. Block diagram of a simple feedback control system 

The closed loop characteristic polynomial ∆(𝑠) of the system 

of Fig.1, i.e. the numerator of 1 + 𝐶(𝑠)𝐺(𝑠), can be written as 
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Decomposing the numerator and the denominator polynomials 

of 𝐺(𝑠) = 𝑁(𝑠)/𝐷(𝑠) into their even and odd parts, and 

substituting 𝑠 = 𝑗𝜔, gives 
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For simplicity (−𝜔2) will be dropped in the following 

equations. Equating the real and imaginary parts of ( )j  to 

zero, kp and ki parameters according to fixed value of kd are 

obtained by (6) and (7) 
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For integrating transfer function with time delay and inverse 

response given in (1), pk and 
ik  values for fixed 

dk  are 

obtained as 
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The WGC based PID design method consists of five steps. All 

steps are applied for a numerical value of the derivative gain 

(kd). Accordingly, the closed loop characteristic equation of 

the control system shown in Fig. 1 corresponded to PID 

controller parameters (kp, ki and kd) is obtained at first. In 

second step, the transformation of s=jω in the closed loop 

characteristic equation is done. Where, j is equal to √−1 and 

ω denotes frequency. In third step, the real and imaginary 

terms are separated from the characteristic equation and two 

equations are obtained by equating them to zero. In fourth step, 

the equation system is solved with respect to frequency for 

different values of kd, and then the stability region on the kp-ki 

plane is obtained. The stabilizing controller parameters regions 

for different values of kd are shown in Fig. 2. It can be seen 

from Fig. 2 that increase in the value of kd  makes the stability 

region bigger. This means that the number of PID controllers 

which stabilizing the closed loop control system increases with 

the increase of derivative gain. Thus, designing a PID 

controller which satisfies desired performances will be 

possible within a large set of controller parameters. Here, the 

main problem is to find the appropriate point or points in the 

stability region for controller design. WGC based controller 

design is a suitable approach for finding the appropriate point 

since the application of the method is simple. 

In the last step, WGC point of the stability region of the 

considered control system is calculated. WGC point is 

computed by using the points on the stability boundary locus. 

WGC points for different values of kd are shown in Fig. 3. This 

locus enclosing the stability region consists of n points of 

which the coordinates are named as (kp1, ki1), (kp2, ki2),…, (kpn, 

kin) and (kp1, 0), (kp2, 0),…, (kpn, 0). Accordingly, kp and ki 

coordinate values of the WGC point are computed by using 

(10) and (11), respectively (see (Onat, 2013) for the details). 

Thus, PID controller parameters based on the WGC are 

obtained as given in Table 1. For the PID controllers given in 

Table 1, the closed loop responses for unit step change are 

illustrated in Figure 4. 
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Fig. 2.Stability regions (blue) for different values of kd 

Fig. 3.The WGC points for different values of kd 

 

Table 1. PID controller parameters based on WGC. 

kp ki kd 

1.6524 0.3153 0.5 

2.0426 0.4951 1.0 

2.4272 0.7198 1.5 

2.8051 1.0014 2.0 

 

 

Fig.4. Unit step responses of PID controllers for closed loop 

system based on WGC points. 

 

3. SIMULATION EXAMPLES 

3.1 Example 1 

Consider the integrating system with time delay and inverse 

response given in (12). Accordingly, the PID controller 

parameters are obtained as kp=1.8489, ki=0.1791 for kd=0.5, 

kp=2.1749, ki=0.2518 for kd=1, kp=2.5124, ki=0.3371 for 

kd=1.5, and kp=2.8583, ki=0.4375 for kd=2 by using the WGC 

method. Stability regions and the WGC points for different 

values of kd  can be seen in Fig. 5. Comparison of unit step 

responses of the closed loop system based on the WGC points 

for Example 1 is shown in Fig. 6. Here, it should be noted that 

parallel form of PID,   d

p

d

Nk ski
C s k

s k s N
  


 (where 

N=100), is used to obtain simulation results. 
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Comparison of unit step responses of Example 1 for different 

values of PID can be seen in Fig. 7. The simulation results 

given in Fig. 7 show that the unit step response obtained for 

the controller designed according to WGC point performs 

better than the controllers designed using different points in 

the stability region. 
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Fig. 5. Stability regions and the WGC points for different 

values of kd 

 

Fig. 6. Comparison of unit step responses of closed loop 

system based on WGC points for Example 1 

 

Fig. 7. Comparison of unit step responses of Example 1 for 

different values of PID 

 

3.2 Example 2 

Generally, industrial processes have very high order dynamics. 

In order to show the effectiveness of the WGC method, 

consider a fourth order integrating process with time delay and 

inverse response studied by (Pai et al., 2010) 

 
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Approximated process model is obtained as in Eq. (14) by (Pai 

et al., 2010) 
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If WGC tuning procedure is applied for this system, PID 

controller parameters are obtained as kp=0.9445, ki=0.1429 for 

kd=1. In addition, the controller parameters for the designs of 

Luyben and Pai et al are given by kp=0.87, ki=0.0362, 

kd=0.9744 and kp=1.27, ki=0.2197, kd=1.1811, respectively. 

The closed loop responses for a set-point change with 

magnitude of 0.2 are illustrated in Fig. 8. Fig. 8 clearly shows 

that the PID controller designed with WGC method performs 

better than Pai method in terms of percent overshoot and also 

gives a better result when compared with Luyben method in 

terms of settling time. 

 

Fig. 8.Comparison of unit step responses of closed loop 

system for Example 2 

3.3. Example 3 

Consider the following integrating transfer function with time 

delay and inverse response which includes uncertain 

parameters. 
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            (15) 

The aim is to design robust PID controller using the stability 

boundary locus approach and the WGC method. The stability 

regions (for fixed kd=1) for the following 8 transfer functions 

and WGC points are shown in Fig. 9. The stability region for 
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G1(s) is the largest and the stability region for G8(s) is the 

smallest regions including stabilizing parameters. It is 

interesting that the stability region determined from G8(s) is 

the common stability region. This means that the controller 

designed from this common region will stabilize all the 

uncertain system. However, for example the PID controller 

designed for WGC point of G1(s) will not stabilize all the 

system such as the systems of G5(s) and G6(s). Therefore, it is 

not a robust controller. On the other hand, a PID controller 

selected from common region will be a robust controller since 

it will stabilize the given uncertain system. Unit step responses 

of 8 transfer functions with the PID controllers designed for 

the corresponding WGC points are shown in Fig. 10 where the 

percent overshoot and settling time values are approximately 

equal to each other.  
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Fig. 9. Stability regions (for fixed kd=1) and WGC points of 8 

transfer function for Example 3 

 

Fig. 10. Step responses of 8 transfer function based on WGC 

points. 

 

Fig. 11. Step responses of 8 transfer functions for kp=2.3387, 

ki=0.1618 and kd=1 from the common stability region. 

 

Fig. 12. Step responses of 8 transfer functions according to 

the WGC point- kp=1.5425, ki=0.1490 and kd=1- from the 

common stability region. 

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

278



 

 

     

 

The unit step responses of 8 transfer functions for kp=2.3387, 

ki=0.1618, and kd=1 from the common stability region can be 

seen in Fig. 11. Besides, the unit step responses for the PID 

controller designed according to the WGC point (kp=1.5425, 

ki=0.1490, and kd=1) which is in the common stability region 

are shown in Fig. 12 where it can be seen that the designed 

controller is robust against the uncertain parameters. 

4. CONCLUSIONS 

In this paper, the WGC method has been used to design PID 

controllers for integrating systems having time delay and 

inverse response. The main advantages of the proposed 

method are that the controller parameters are calculated 

numerically without using any graphical method or iterative 

process and the estimated controller parameters from WGC 

gives appropriate unit step responses. Numerical examples 

have been provided to show the benefit of the results. Also, it 

has been shown that the controller designed from WGC point 

is robust in case of parameter uncertainties. For the designers 

in the industry, the simplicity of the tuning method is an 

important advantage. 
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