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Abstract: The problem of designing a pole placing PID type (ppPIDt) controller is considered,
motivated by educational considerations. Effectively, the number of controller zeros, integrators
and filtering poles can be extended to aid in the response shaping and stabilizing of the closed
loop, while simultaneously avoiding spikes in the control signal. In contrast to the state feedback
observer–controller, we do not emphasize maintaining the original systems order, rather we
utilize the increased order of the closed loop to shape its response by a suitable choice of poles
in the closed loop. This is similar to the classical PID which typically increases the order of
the original system by two in the closed loop. We also propose a prefilter to cancel stable
system zeros and ppPIDt zeros and replace them by new zeros if desirable. This results in a
new overall transfer function of the controlled system, with full pole placement including good
input tracking and disturbance rejection properties and guaranteed closed loop stability. The
material is presented in a tutorial way suitable for basic undergraduate control courses and has
been used successfully by the first author in such a course.
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1. INTRODUCTION

PID (Proportional, Integral, Differential) controllers are
the most common controllers in industry today. They
remain a very active research area, as evident in the
numerous books, e.g., Åström et al. (2006), Åström et al.
(1997), Skogestad et al. (2007) and Datta et al. (2013) on
the topic. A recent survey paper on the evolution of control
by Åström et al. (2014), provides an excellent historical
perspective, wherein PID controllers are a key player in the
highly multidisiplinary area of control. A much referenced
survey paper on automatic tuning and adaptation for PID
controllers, is Åström et al. (1993). A new paper provides
an interesting experimental comparison of PID autotuners
Berner (2018).
Polynomial based design frequently leads to the Diophan-
tine equation and, subsequently, to the Sylvester matrix
in control problems, see, e.g., Kucera (1993) and Åström
et al. (1997). The classical observer state feedback con-
troller also belongs to this group, when presented in trans-
fer function form, see Kailath (1980).
Closed form expressions of linear system responses have
been developed and used for optimal computation of PID
zeros, see Herjólfsson et al. (2012), and other references
therein. A polynomial based approach towards the design
of PID controllers was taken in Hauksdóttir et al. (2011),
however, closed loop stability was not guaranteed.

? This work was supported by the University of Iceland. The authors
are grateful to the numerous helpful comments on the manuscript
from anonymous reviewers.

In this paper, we propose a pole placing PID type con-
troller. Effectively, we extend the number of PID zeros,
PID integrators and PID high frequency filtering poles to
aid in reponse shaping and stabilizing of the closed loop
as well as to avoid spikes in the control signal. As it turns
out, if the number of poles of the plant model is n and
the order of the integrator in the controller is N, then
by adding N + n − 1 controller zeros and n − 1 filtering
poles, thus maintaining a relative degree of zero for the
controller, the unknown coefficients of the corresponding
polynomials are determined uniquely by the closed loop
poles. Thus, full placement, and thereby stability of all
closed loop poles, is guaranteed. These are simply obtained
by equating coefficients of like powers resulting in a linear
system with a Sylvester matrix. In addition, a prefilter is
used in the shaping of the reference input. The design is
polynomial based. A regular PID with a low pass filter on
the D part results in the case of n = 2.
A word of caution is appropriate here, as it is known that
higher order controllers, and in particular an increased
number of integrators in an outer control loop, may lead to
systems with low stability margins. Such controllers may
also be sensitive to variations in the nominal plant, in par-
ticular for challenging unstable nonminimum phase plants,
see Keel (1997). We note here, though, that nominal stabil-
ity is guaranteed as the problem is posed as a closed loop
pole placement problem. Further, the controlled system
was found to be quite insensitive to variations in a nominal
underdamped benchmark problem, Åström et al. (2000).
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We present the ppPIDt type controller in Section 2. We
discuss the choice of closed loop poles in Section 3 and
the prefilter design in Section 4. Examples are given in
Section 5 and conclusions are discussed in Section 6. The
Diophantine equation and the Sylvester matrix in control
systems are shortly covered in Appendix A.

2. A POLE PLACING PID TYPE CONTROLLER
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Fig. 1. A pole placing PID type controller with a prefilter.

We would like to build a pole placing PID type controller.
The controller should be effective in input tracking and dis-
turbance rejection, yet without a high cost in the control
signal by keeping it a zero relative degree controller, thus
guaranteeing its realizability. In addition, closed loop sta-
bility must be guaranteed and closed loop design require-
ments should be fulfilled. Towards this end, we extend the
number of PID integrators, zeros and use high frequency
filtering, typically implemented in a regular PID to avoid
spikes in the control signal, to aid in the pole placement
of the closed loop. This controller will move poles without
cancellation and it will not cancel unstable system zeros.
Thus, it can deal with unstable systems as well as systems
with some right half plane zeros.
Consider a SISO system, see Fig. 1, where the transfer
function for the plant G(s) is given by

G(s) =
Y (s)
U(s)

=
b(s)
a(s)

=
bmsm + bm−1sm−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
. (1)

The transfer function of the ppPIDt controller is given by

Gc(s) = c(s)
sNf(s) = cmcs

mc + cmc−1s
mc−1 + · · ·+ c0

sN
(
snf + fnf−1snf−1 + · · ·+ f0

) . (2)
The term ppPIDt controller needs some further explaining.
A regular PID has a proportional term P , multiplying the
present time value of the output error; an integral term
I of the output error, effectively describing the history of
the output error; and, attempting to predict the future, a
differential term D of the output with a low pass filter to
curb the noise in the D term. When written as a transfer
function, the standard PID has two zeros (mc = 2), one
integrator (N = 1) and one pole (nf = 1) in the form of
(2). Extending the thought of a single P term, but adding
further information of the history of the output error by
including a regular I term, a double integral term etc., and
similarly enhancing the prediction of the future by adding
a double differential term with two lowpass filters etc., to
the regular D term, leads to a controller of the transfer
function (2). Including a sufficient number of coefficients
in c(s) and f(s) further ensures a full pole placement
capability of the closed loop by a set of fully determined
linear equations, thus the term ppPIDt controller.
Thus, we propose more than two zeros, possibly more than
one integrator and the number of poles is chosen such that

mc = N + nf , so that the controller has a relative degree
of zero. All the nf +mc + 1 free coefficients of the ppPIDt
controller aid in the pole placement of the closed loop.
The integrators ensure a PID like behavior in closed loop
in terms of input signal tracking and disturbance rejection,
N = 1 for steps, N = 2 for steps and ramps etc.
The closed loop transfer function becomes

Y (s)
R(s) =

c(s)b(s)
sNf(s)a(s)

1 + c(s)b(s)
sNf(s)a(s)

= c(s)b(s)
sNf(s)a(s) + c(s)b(s) . (3)

The disturbance hits the plant at the input, at the output
or somewhere in between. We thus split the plant into two
parts, i.e., the part before the disturbance bb(s)/ab(s) and
the part after the disturbance ba(s)/aa(s). The transfer
function from the disturbance to the error is given by

E(s)
D(s) =

− ba(s)
aa(s)

1 + c(s)b(s)
sNf(s)a(s)

= − sNf(s)ab(s)ba(s)
sNf(s)a(s) + c(s)b(s) . (4)

Thus, lim
t→∞

e(t) = 0 can be guaranteed by a proper selection
of N for the different standard types of disturbance, step,
ramp etc. We note here that c(s) = 0 does not have any
zero roots and, further, that the choice of N is affected by
possible zero roots in b(s) = 0.
The basic idea is to choose the coefficients of c(s) and f(s)
in such a way that the closed loop (CL) poles given by

δ(s) = sNf(s)a(s) + c(s)b(s)
= snδ + δnδ−1s

nδ−1 + · · ·+ δ1s+ δ0,
(5)

are prescribed. In order for this choice to be unique or,
equally, for the problem to be a fully determined one, the
number of CL poles has to be equal to the number of
unknown coefficients, i.e.,

nδ = nf +mc + 1. (6)

In addition, we want the relative degree of the controller to
be zero, such that it will have a PID like behavior without
direct differentiating effects, yet maintaining an aggressive
control signal with a direct transfer from the error to the
control signal, i.e.,

mc = N + nf . (7)

Given that m ≤ n, it follows from (5) that
nδ = N + nf + n (8)

and hence from (6)
mc = N + n− 1, (9)

then from (7) that
nf = n− 1 (10)

and, finally from (8)
nδ = N + 2n− 1. (11)

The classical PID controller typically increases the degree
of the system and the closed loop normally has a degree of
n+ 2. Here we are not focusing on maintaining the closed
loop of the same degree as the system to be controlled, as
in the pole placement problem (see discussion in Appendix
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A), rather we use the higher order closed loop to our
benefit in shaping the closed loop dynamics. We note
though that, if desired, one may begin by cancelling
feasible stable parts of the system zeros and/or poles,
before proceeding with the design of the remaining ppPIDt
controller.
The design procedure, given a(s) and b(s), is composed of
the following steps:
(1) Choose N, compute mc and nf from (9) and (10),

respectively.
(2) Choose the desired nδ roots of δ(s) = 0, and hence

the coefficients δi, i = 0, 1, . . . , nδ − 1.
(3) Equating the coefficients of (5) on each side, solve for

the nf +mc+1 unknown coefficients of the controller,
fi, i = 0, 1, . . . , nf − 1 and ci, i = 0, 1, . . . ,mc from
the following linear system, by making, e.g., use of
Matlab’s backslash command.



1 0 · · · →
an−1 1 0 · · · →

an−2 an−1
. . .

... an−2 ↘

↓
...

... ↑

↖ b2
...

. . . b1 b2
←− · · · 0 b0 b1

←− · · · 0 b0


nδ×nδ

×



fnf−1
fnf−2

...
f0
cmc
cmc−1

...
c0


(nδ=mc+1+nf )×1

=


δnδ−1 − an−1
δnδ−2 − an−2

...
δ1
δ0


nδ×1

.

(12)

Note that the nδ × nδ Sylvester matrix is of full rank as
long as a(s) = 0 and b(s) = 0 have no common factors, see
e.g., Kailath (1980).
Remark 1. Equation (5) is a form of the Diophantine
equation which here leads to a solution involving the
Sylvester matrix in (12), see Appendix A for a further
discussion of their appearances in control.
Remark 2. If we want to restrict ourselves to a regular
PID without differentiating effects and thus set mc = 2,
nf = 1, N = 1, (6) can only be satisfied if nδ = 4, and
hence (5) can only hold true if n = 2. In the case n > 2
we have the option of only satisfying (5) in a least squares
sense, i.e., by solving the overdetermined system



1
an−1
an−2

... ↑

↓
... ↑

b2
... ↑

b1 b2
...

b0 b1 b2
0 b0 b1
0 0 b0


nδ×4

×

 f0
c2
c1
c0


4×1

≈


δnδ−1 − an−1
δnδ−2 − an−2

...
δ1
δ0


nδ×1

(13)

which can again, e.g., be done by the use of Matlab’s
backslash command. However, in this case, closed loop
stability is not guaranteed. This is similar to the approach
taken in Hauksdóttir et al. (2011). There, however, f(s)
was not utilized to place the closed loop poles, but simply
implemented as a regular derivative divisor in the PID.

3. CHOICE OF CLOSED LOOP POLES

We now need a systematic way of selecting the desired
closed loop poles, i.e., the roots of δ(s) = 0. It is useful to

v(t)
+
−

er(t) 1
sN

Kr
br(s)
ar(s)

yr(t)

Fig. 2. A SISO reference system.

choose a simple reference system to represent the design
requirements, see Fig. 2. The transfer function of the
reference system is chosen of the general form

Gr(s) = Kr
br(s)

sNar(s)

= Kr
smr + bmr−1,rs

mr−1 + · · ·+ b0,r

sN (snr + anr−1,rsnr−1 + · · ·+ a0,r)
.

(14)

The closed loop of the reference system, also representing
the closed loop design requirements, is given by

Yr(s)
V (s) =

Kr
br(s)

sNar(s)

1 +Kr
br(s)

sNar(s)

= Krbr(s)
sNar(s) +Krbr(s)

= Krbr(s)
δ(s) ,

(15)

where
nr = nδ −N. (16)

The roots of δ(s) = 0 are selected as follows:
(1) We choose N to have the same value as in the system

to be controlled in Fig. 1.
(2) We choose the desired dominant closed loop pole pair

termed s1,2 = σ ± jω, i.e., two of the δ(s) = 0 roots,
such that they meet some design criteria, typically
maximum overshoot and maximum settling time.
Alternatively, s1 and s2 may be chosen to be located
separately on the negative real axis.
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(3) We select parts of br(s)
ar(s) such that the root locus of

the reference system goes through s1,2.
(4) The remaining zeros and poles of br(s)

ar(s) are placed in
pairs close to each other and to the left of the s1,2
area, such as to have a minimal effect.

(5) Kr is fixed by the length condition such that the
dominant closed loop roots of the reference system
are located at s1,2.

In summary, the closed loop design requirements are
described by the time response corresponding to (15). We
further note, that br(s) and ar(s) are chosen such that the
corresponding root loci is in general considerably simpler
than the controlled system’s root loci.

4. PREFILTER DESIGN

The closed loop controlled system has the transfer function
Y (s)
R(s) = c(s)b(s)

δ(s) . (17)

If c(s)b(s) = 0 has stable roots, we may prefilter the input
r(t) of the controlled system by a unity DC gain prefilter
given by

R(s)
V (s) = Krbr(s)

c(s)b(s). (18)

In that case perfect tracking of the reference system results
and we have

Y (s)
V (s) = Krbr(s)

δ(s). (19)

We note that the prefilter has a unity DC gain, i.e.,

lim
s→0

R(s)
V (s) =

lim
s→0

Krbr(s)

lim
s→0

c(s)b(s) = 1 (20)

as we have from (5) and (15) that
lim
s→0

δ(s) = lim
s→0

c(s)b(s) = lim
s→0

Krbr(s). (21)

Naturally, the prefilter does not affect the disturbance
rejection, as it is outside the feedback loop.
We may also leave parts of or all of the dynamics given
by c(s)b(s), if it improves the response or if parts of
c(s)b(s) contain unstable roots and should therefore not
be cancelled. Further, if the relative degree of the prefilter
is negative, we may use a set of padding poles each of the
form fpre(s) = τs+ 1 in the prefilter, to avoid a negative
relative degree. Those are simply placed to the left of the
active overall pole/zero zone.

5. EXAMPLES

Example 1: We now consider a highly under-damped 3rd
order benchmark plant from Åström et al. (2000), with
ζ = 0.2 and ωn = 1rad/s in the underdamped part and a
third pole at s = −2, given by

b(s)
a(s) = 2

(s+ 2)
1

(s2 + 0.2s+ 1) , (22)

this plant has an overshoot of 65%, a 2% settling time of
38.5s and a DC gain of unity.

(1) Given n = 3, selecting N = 1, we have
mc = 1 + 3− 1 = 3 (23)

and
nf = 3− 1 = 2. (24)

(2) We choose a reference system

Kr
br(s)
sar(s)

= 2 (s+ 2.9)(s+ 3.9)(s+ 4.9)(s+ 5.9)
s(s+ 2)(s+ 3)(s+ 4)(s+ 5)(s+ 6)(25)

which has dominant closed loop poles at s1,2 = −1±
j0.9.

(3) We now solve
1 0 0 0 0 0
a2 1 0 0 0 0
a1 a2 b0 0 0 0
a0 a1 0 b0 0 0
0 a0 0 0 b0 0
0 0 0 0 0 b0




f1
f0
c3
c2
c1
c0

 =


δ5 − a2
δ4 − a1
δ3 − a0
δ2
δ1
δ0

 (26)

This results in the ppPIDt controller given by
166.06s3 + 536.35s2 + 562.3s+ 362.97

s(s2 + 17.8s+ 116.44)
= 166.06(s+ 2.05)(s+ 0.59± j0.78)

s(s+ 8.9± j6.10)

(27)

and a prefilter of
Krbr(s)
c(s)b(s)

= 2(s+ 2.9)(s+ 3.9)(s+ 4.9)(s+ 5.9)
166.06(s+ 2.05)(s+ 0.59± j0.78)2(s/20 + 1) ,

(28)

where the pole at s = −20 is a padding pole.
The system is subject to a unit step input at time t = 0 and
to a unit step disturbance at time t = 10. The disturbance
hits the plant right into the highly underdamped part,
after the real pole at s = −2. The resulting closed loop con-
trol signal and output and the corresponding root locus are
shown in Fig. 3. The resulting gain margin is 14.4dB and
the phase margin was found to be 43 degrees. Again, the
prefiltering results in a perfect match with the reference
system response during input tracking and excelling dis-
turbance rejection for the highly underdamped plant. The
control signal remains moderate during the input tracking
as well as the disturbance rejection period. Naturally, here
the closed loop poles of the ppPIDt controlled system and
the reference system closed loop poles do fully coincide.
The controller turned out to be quite robust with respect
to changes in the nominal plant. The nominal plant was
perturbed like this

b(s)
a(s) = 2ρ

(s+ 2ρ)
ρ

(s2 + 0.2ρs+ ρ) , (29)

stability was maintained for 0.5 ≤ ρ ≤ 3.2, results are
shown for the case ρ = 0.6 in Fig. 4. Naturally, here the
closed loop poles of the ppPIDt controlled system and the
reference system closed loop poles do not coincide.
An IMC was also tested here and effectively resulted in
a type 1 controller with zeros completely cancelling the
system dynamics and two real poles, when examined as a
controller directly preceeding the plant. The input tracking
phase was excellent with a moderate control signal, thus a
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Fig. 3. Example 1. A ppPIDt controller for a highly under-
damped plant.
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Fig. 4. Example 1. A ppPIDt controller for a highly
under-damped plant, robustness study with respect
to changes in nominal plant, ρ = 0.6.

prefilter was not used to curb the control signal. However,
as typically happens when highly underdamped system
poles are cancelled, the disturbance rejection was not
acceptable. It should be noted that a feed forward (FF)
was not implemented to aid in the disturbance rejection.
In fact, both controllers might benefit from a FF if
the disturbance can be measured. In the case when a
disturbance can not be measured, a disturbance observer

may be successfully used with both controllers Hauksdóttir
et al. (2011).
Example 2: We now present a regular PID designed by
the same approach, i.e., by solving (13) in a least squares
sense.
(1) Given n = 2, selecting N = 1, we have

mc = 1 + 2− 1 = 2 (30)
and

nf = 2− 1 = 1. (31)
(2) We choose a reference system

Kr
br(s)
sar(s)

= 2 (s+ 2.9)(s+ 3.9)(s+ 4.9)
s(s+ 2)(s+ 3)(s+ 4)(s+ 5) (32)

which has dominant closed loop poles at s1,2 =
−1.04± j0.902.

(3) We now solve
1 0 0 0
a2 0 0 0
a1 b0 0 0
a0 0 b0 0
0 0 0 b0


 f0
c2
c1
c0

 ≈

δ4 − a2
δ3 − a1
δ2 − a0
δ1
δ0

 (33)

This results in the ppPIDt controller given by
67.41s2 + 75.64s+ 55.42

s(s+ 28.99)
= 67.41(s+ 0.56± j0.71)

s(s+ 28.99) .
(34)

and a prefilter of
Krbr(s)
c(s)b(s) = 2(s+ 2.9)(s+ 3.9)(s+ 4.9)

6.74(s+ 0.56± j0.71)2(s/20 + 1) , (35)

where the pole at s = −20 is a padding pole.
The resulting closed loop control signal and output and
the corresponding root locus are shown in Fig. 5. The
resulting gain margin is 16.3dB and the corresponding
phase margin was found to be 13 degrees, a bit low.
Naturally, the closed loop poles of the PID controlled
system and the reference system do not coincide here
and the input tracking response and the disturbance
rejection are considerably more oscillating. The control
signal remains moderate throughout the simulation.

6. CONCLUSIONS

The problem of designing a pole placing PID type con-
troller was considered by extending the number of PID
zeros, PID integrators and PID poles to aid in the re-
sponse shaping and stabilizing of the closed loop. Several
examples were tested with quite good results. The method
can deal with highly oscillatory plants with good input
tracking and disturbance rejection. This controller moves
poles without cancellation and it does not cancel plant
zeros. Thus, it can deal with unstable plants, as well as
plants with right half plane zeros. Robustness has also been
successfully tested.
It is also possible to use the same method for computing
a regular PID, in that case the pole placement becomes
a least squares solution to an overdetermined system of
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Fig. 5. Example 2. A regular PID for a highly under-
damped plant.

equations. However, closed loop stability is not guaranteed
in that case.
In summary, the ppPIDt controller is easily computed and
implemented, effective in input tracking and disturbance
rejection, without a high cost in the control signal, in addi-
tion to closed loop stability being guaranteed. Finally, the
methodology is easily presented in basic control courses.
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Appendix A. THE DIOPHANTINE EQUATION AND
THE SYLVESTER MATRIX IN CONTROL

PROBLEMS

There are many occurrences of the Diophantine equation
and the subsequent Sylvester matrix in control, see, e.g.,
Kailath (1980), Kucera (1993) and Åström et al. (1997).
Even the simple pole placement problem applying state
feedback without an observer, i.e., assuming all states are
available for feedback, leads to a very simple form of the
Diophantine equation, where the original characteristic
equation plus a shifting characteristic equation leads to
the new characteristic equation. This is easily seen by
considering the regular pole placement problem where
c(s)/f(s) is implemented in the feedback. If f(s) = b(s)
for stable b(s) there results

b(s)
a(s)

1 + c(s)b(s)
f(s)a(s)

= f(s)b(s)
f(s)a(s) + c(s)b(s)

= b(s)
a(s) + c(s) = b(s)

δ(s) .
(A.1)

Thus, the number of poles remains unchanged if the degree
of c(s) is no larger than that of a(s). This corresponds to

a(s) = det(sI −A), (A.2)
b(s) = CAdj(sI −A)B (A.3)

and
c(s) = KAdj(sI −A)B (A.4)

in the state space form {A,B,C}, where K is the state
feedback vector.
In the more general case of an observer controller designed
using a transfer function formulation Kailath (1980), we
end up with a more general Diophantine equation, leading
to a polynomial of order 2n and a subsequent Sylvester
matrix. The polynomial is then selected to be equal to the
new characteristic polynomial times the observer poles. We
then end up with an observer controller setup, wherein
the observer dynamics are cancelled, effectively making
the observer unobservable. This leads to a new transfer
function of order n, having a new set of poles, but keeping
the original zeros.
Various other setups in control lead to the Diophantine
equation and the Sylvester matrix, see Kucera (1993) for
a survey paper on the subject and Åström et al. (1997) for
setups for discrete time systems.
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