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Abstract: In this paper, a nonovershooting tracking controller is proposed for the continuous infusion of
multiple drugs that have interactive effects. The proposed controller design method exploits the freedom
of eigenstructure assignment pertinent to the design of feedback controllers for multi-input, multi-output
(MIMO) systems. For drug dosing, a nonovershooting tracking controller restricts the undesirable side
effects of drug overdosing. The proposed tracking controller is based on an estimate of the full state using
a hybrid extended Kalman filter (EKF) that is used to reconstruct the system states from the measurable
system outputs. An integral control action is included in the controller design to achieve robust tracking
in the presence of patient parameter uncertainty. Simulation results and performance analysis of the
proposed control strategy are also presented using 20 simulated patients.
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1. INTRODUCTION

Even though the critical task of anesthesia administration has
been widely discussed in the literature and studied using clini-
cal trials over the last few decades, several recent reviews on the
existing methods highlight various aspects of the problem that
needs further research attention [Van Den Berg et al. (2017),
Ionescu et al. (2014)]. In the case of patients in ICU’s, anes-
thetic and analgesic drugs are often required for several hours
or days to facilitate cooperative treatment. Overdosing of such
drugs have several side effects such as nausea, hypotension, de-
layed weaning from mechanical ventilation, immunosuppres-
sion, and in certain cases is even fatal to patients [Mehta et al.
(2006)]. For continuous infusion of anesthetic and analgesic
drugs for long periods, it is apparent that an appropriate closed-
loop control strategy can be used to enhance patient safety.

We use a common sedation assessment measure such as the
bispectral index (BIS) to quantify the sedation level of the
patient. The primary hurdle in the design of a closed-loop con-
troller for analgesic administration is the lack of a reliable pain
assessment model. The most reliable and valid indicator of pain
is the patient’s self-report [Mehta et al. (2006)]. However, crit-
ically ill patients are often unable to verbally communicate the
level of pain. In an attempt to identify novel and reliable tools
to assess pain, several indices using the electroencephalogram
(EEG), electromyogram (EMG), heart rate, respiratory rate,
skin conductivity, and facial expression have been proposed
[Mehta et al. (2006), Jin et al. (2016)].
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A semi-adaptive controller which relies on the remifentanil
induced respiratory depression of the patient for the closed-
loop drug titration is proposed in Jin et al. (2016). However,
as pointed out in Ionescu et al. (2014), in the case of ICU pa-
tients who are supported by mechanical ventilators, respiratory
depression may not be a reliable measure to assess analgesic
concentration. Furthermore, it is risky to use heart rate and
mean arterial pressure as feedback parameters for analgesic
titration; this is primarily due to the variation caused by the con-
comitant infusion of cardiac depressive sedatives or underlying
illness of the patient. Several studies point out the association of
remifentanil concentration in the blood with muscle activity of
a patient [Mehta et al. (2006), Van Den Berg et al. (2017)]. The
EMG-based analgesic index proposed in Ionescu et al. (2014)
relates analgesic concentration to EMG. Given that this variable
is suitable for conducting in silico trials and also measurable, in
this paper we use the EMG-based analgesic index to regulate
the analgesic drug infusion rate.

In this paper, we develop a nonovershooting tracking controller
for the combined administration of multiple drugs with interac-
tive effects. The proposed controller can track desired outputs
such as BIS levels and pain levels without incurring an over-
shoot in the system response by accounting for synergistic drug
interaction, and hence, avoiding drug overdosing. Compared to
the design strategies proposed for the combined administration
of propofol and remifentanil in Ionescu et al. (2014) and Mah-
fouf et al. (2005), the advantage of the proposed method is
its nonovershooting and robustness properties. The remainder
of this paper is organized as follows. Section 2 presents an
introduction to the drug kinetics and dynamics for the dispo-
sition of propofol and remifentanil followed by the design of
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the nonovershooting controller for the simultaneous infusion of
these interactive drugs. Simulation results and statistical analy-
sis using the proposed controller for 20 simulated patients are
given in Section 3. Conclusions are presented in Section 4.

2. METHODS

2.1 Drug disposition model

We use a three-compartment model to represent the drug dis-
position in the human body, where Compartment 1 models the
intravascular blood, Compartment 2 models muscle tissue, and
Compartment 3 models fat. An effect-site compartment is also
used to account for the drug dynamics at the locus of the drug
effect [Haddad et al. (2010)]. The mass balance equations used
to model the drug transfer between the various compartments
are given by [Ionescu et al. (2014)]
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where xi(t), t ≥ 0, i = 1,2, and 3, correspond to the masses of
the sedative drug and xi(t), t ≥ 0, i = 4,5, and 6, correspond
to the masses of the analgesic drug in the first, second, and
third compartment, respectively, cS

eff(t), t ≥ 0, and cA
eff(t), t ≥

0, denote the effect-site concentrations of the sedative and
analgesic drug, respectively, kS

ji and kA
ji, i 6= j, denote the rate of

mass transfer between the jth and ith compartments, vS
i and vA

i ,
i = 1,2, and 3, are the volume of three compartments, and uS(t),
t ≥ 0, and uA(t), t ≥ 0, are the infusion rates of the sedative and
analgesic drug, respectively. Thus, the state vector is given by
x(t) = [x1(t), x2(t), x3(t), cS

eff(t), x4(t), x5(t), x6(t), cA
eff(t)]

T.

In Table 1, lbm = 1.07weight − 148(weight2/height2), where
lbm is the lean body mass of the patient, ke0 is the effect-
site elimination rate constant, C1 is the rate at which the drug
is cleared from the body by the elimination process, and C2
and C3 are the rates of drug clearances between the central
compartment and Compartments 2 and 3, respectively. When
two drugs with synergistic interactive effects are administrated
simultaneously, the effect of each drug varies according to the
ratio of the two drugs and their normalized drug concentration.
The measured value of the BIS index, denoted as BIS, ranges
from 0 to 100. The net sedative effect of an anesthetic drug

when administrated along with an analgesic drug having a
synergistic interactive effect is given by [Ionescu et al. (2014)]

BIS(t) = BIS0


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(
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)γ(φ(t))


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where φ(t) , US(t)
US(t)+UA(t) , γ(φ(t)), t ≥ 0, is the steepness of the

concentration-response relation at ratio φ(t), and U50(φ(t)) is
the number of units associated with 50% of maximum effect at
ratio φ(t). Furthermore, US(t), t ≥ 0, and UA(t), t ≥ 0, are the
normalized drug concentrations of the sedative and analgesic

drugs and are given by US(t) = cS
eff(t)
cS

50
and UA(t) = cA

eff(t)
cA

50
, where

cS
50 and cA

50 are the drug concentrations of the sedative and
analgesic that cause 50% drug effects, respectively.

Remifentanil causes pain reduction as well as muscle relaxation
and the percentage of muscle relaxation indicates the amount of
remifentanil in the blood. We use the EMG index proposed in
Ionescu et al. (2014), which relates the effect-site remifentanil
concentration to electromyographic measurements. The rela-
tionship between the EMG index and remifentanil concentra-
tion is given by

EMG(t) =
100× cA

eff(t)
3.4× cA

eff(t)+0.0063
. (10)

The value of the EMG(t), t ≥ 0, indicates the percentage of
muscle relaxation and varies from 0% to 100%, and hence, (1)–
(10) can be written as

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, t ≥ 0, (11)
y(t) = h(x(t)), (12)

where A∈R8×8 is a state transition matrix, B∈R8×2 is an input
matrix, x(t)∈R8, t ≥ 0, is the state vector, u(t) = [uS(t),uA(t)]T

is the control input, and y(t) = [BIS(t), EMG(t))]T is the
system measurement.

As shown in the next section, in order to design a nonovershoot-
ing controller, a linear approximation of the measurements (9)

Table 1. Patient model parameters and equations
for the sedative drug propofol and analgesic drug

remifentanil .

Parameter Sedative Analgesic Unit

v1 4.27
5.1 − 0.0201(age −
40)+0.072(lbm−55)

l

v2
18.9 − 0.391(age −
53)

9.82 − 0.0811(age −
40)+0.108(lbm−55)

l

v3 2.38 5.42 l

C1

1.89 +
0.0456(weight −
77) −
0.681(lbm − 59) +
0.0264(height−177)

2.6 − 0.0162(age −
40) + 0.0191(lbm −
55)

l min−1

C2
1.29 − 0.024(age −
53)

2.05 − 0.0301(age −
40)

l min−1

C3 0.836
0.076 −
0.00113(age−40)

l min−1

ke0 0.456
0.595 − 0.007(age −
40)

min−1

k10 C1/v1 C1/v1 min−1

k12 C2/v1 C2/v1 min−1

k13 C3/v1 C3/v1 min−1

k21 C2/v2 C2/v2 min−1

k31 C3/v3 C3/v3 min−1
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and (10) is required. Using a linear regression model in the
region of the required maintenance value for BIS(t), t ≥ 0, and
EMG(t), t ≥ 0, (9) and (10) can be represented as[

y1(t)
y2(t)

]
=

[
m1 m2
0 m3

][
cS

eff(t)
cA

eff(t)

]
+

[
c1
c2

]
. (13)

The parameter values mi, i = 1,2, and 3, and the constants
ci, i = 1 and 2, in (13) can be determined by multiple linear
regression using a least squares method on randomly selected
patient data relating the patient’s pharmacokinetic and pharma-
codynamic parameters and measured responses [Ionescu et al.
(2014)]. Consequently, the linearized patient dynamical model
can be written as

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, t ≥ 0, (14)
y(t) = Cx(t)+d, (15)

where C =
[

0 0 0 m1 0 0 0 m2
0 0 0 0 0 0 0 m3

]
and d = [c1, c2]T.

2.2 Nonovershooting controller design

The aim is to design a tracking controller in which the patient
responses BIS(t), t ≥ 0, and EMG(t), t ≥ 0, asymptotically ap-
proach the desired target values BIStarget and EMGtarget without
any overshoot. The key idea behind the nonovershooting con-
troller design is to obtain a state feedback gain that achieves a
specific closed-loop eigenstructure such that the selected modes
of the closed-loop system appear in each component of the
output [Schmid and Ntogramatzidis (2010)]. In order to achieve
robust tracking in the presence of system parameter uncertainty,
an integral control action is included in the controller. We define
the integral of tracking error as

e(t) =
∫ t

0
[yd− y(τ)]dτ, (16)

where yd = [yd1, yd2]T and y(t) = [y1(t), y2(t)]T are the desired
response and the measured response, respectively. Note that
ė(t), t ≥ 0, is given by

ė(t) = yd− y(t), e(0) = 0, t ≥ 0. (17)
Next, using (14), (15), and (17) the augmented system Σa is
given by

ẋa(t) = Aaxa(t)+Bau(t)+Hyd−Hd, xa(0) = xa0,

y(t) = Caxa(t)+d,
(18)

where xa(t) = [x(t), e(t)]T ∈Rn̂, t ≥ 0, n̂ = n+ p, H = [ 0 I ]T ,

Aa =
[

A 0
−C 0

]
, Ba =

[
B
0

]
, Ca = [C,0p×p]. (19)

The aim here is to design a control input u(t) = Kaxa(t) such
that Aa + BaKa is asymptotically stable and the output y(t),
t ≥ 0, tracks the reference input yd without any overshoot. Since
Σa is a MIMO system, we can associate multiple sets of n̂ eigen-
vectors for a given set of n̂ eigenvalues. We use this flexibility
in eigenvector assignment to achieve the desired nonovershoot-
ing property. Specifically, we choose eigenvectors such that a
specific set of closed-loop modes appear in the output. Note
that for a specific set of n̂ eigenvalues L = {λ1, . . . ,λn̂} and
linearly independent eigenvectors V = {v1, . . . ,vn̂}, the associ-
ated feedback gain matrix Ka is unique.

The number of closed-loop modes that can be annihilated from
the output signal depends upon the number of invariant zeros
of (18) in the left-half plane (LHP). For an open-loop system
with n̂− l p invariant zeroes in the LHP, denoted as zi, i =

1, . . . , n̂− l p, the closed-loop eigenvalues are chosen such that
λi = zi, i = 1, . . . , n̂− l p [Schmid and Ntogramatzidis (2010)].
The remaining closed-loop poles λi, i ∈ {n̂− l p+1, . . . , n̂}, can
be chosen to be real and asymptotically stable. Finally, define

the Rosenbrock system matrix PΣa ,
[

Aa−λiI Ba
Ca 0

]
.

Next, let S = {s1, . . . ,sn̂} ⊂ Rp, where

si =





0, i ∈ {1, . . . , n̂− l p},
e1, i ∈ {n̂− l p+1, n̂− l p+2, . . . , n̂− l p+ l},
...

...
ep, i ∈ {n̂− l +1, . . . , n̂},

(20)

and e1, . . . ,ep are basis vectors inRp. Furthermore, assume that,
for 1≤ i≤ n̂, the matrix equation[

Aa−λiI Ba
Ca 0

][
vi
wi

]
=

[
0
si

]
(21)

has a solution characterized by V = {v1, . . . ,vn̂} ⊂ Cn̂ and
W = {w1, . . . ,wn̂} ⊂ Cp. Now, if the vectors in V are linearly
independent, then there exists a unique feedback gain matrix Ka
such that, for all i ∈ {1, . . . , n̂},

(Aa +BaKa)vi = λivi,

Cavi = si.
(22)

Now, solving (22) for the vectors in S , we obtain V =
{v1, . . . ,vn̂} and W = {w1, . . . ,wn̂}, where

[
vi
wi

]
=





N (PΣa(λi)) , i ∈ {1, . . . , n̂− l p},
P−1

Σa

[
0
si

]
, i ∈ {n̂− l p+1, . . . , n̂}, (23)

and N (·) denotes the null space. Thus, vectors in V satisfy
si = Cavi for all i = 1, . . . , n̂.

If the vectors in V are linearly independent, then applying
Moore’s algorithm we obtain Ka as

Ka = W V −1, (24)
where Aa +BaKa has distinct eigenvalues corresponding to lin-
early independent eigenvectors given by L and V , respec-
tively. The solution vi ⊂ Cn̂ and wi ⊂ Cp is in the null space
of PΣa for s = λi, i = 1, . . . , n̂− l p. Now, let vk,1,vk,2, . . . ,vk,l
and λk,1,λk,2, . . . ,λk,l be the vectors in V with their respec-
tive eigenvalues associated with the standard basis vector ek,
k ∈ 1, . . . , p.

Since the eigenvalues of the closed-loop system are asymptoti-
cally stable, it follows that the tracking error (yd−y(t))→ 0 as
t → ∞. Next, define

Âa , Aa +BaKa, Ĥa , Hyd−Hd, (25)
so that (18) can be rewritten as

ẋa(t) = Âaxa(t)+ Ĥa, xa(0) = xa0, t ≥ 0, (26)
y(t) = Caxa(t)+d, (27)

where, xa(t) = eÂatxa0 + eÂat Â−1
a Ĥa− Â−1

a Ĥa.

Note that the state transition matrix can be written as eÂat =
VeΛtV−1, where Λ is a diagonal matrix with the eigenvalues λi,
i = 1, . . . , n̂, on the diagonal and V is a matrix composed of the
associated eigenvectors. Thus,

xa(t) = VeΛtV−1xa0 +VeΛtV−1Â−1
a Ĥa− Â−1

a Ĥa. (28)
Now, defining

α , [ α1 . . . αn−l p α1,1 . . . α1,l . . . αp,1 . . . αp,l ]T = V−1xa0
(29)
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and
β , V−1Â−1

a Ĥa, (30)
the system output y(t), t ≥ 0, is given by

y(t) =
n̂

∑
i=n̂−l p+1

ei−(n̂−l p)αieλit +
n̂

∑
i=n̂−l p+1

ei−(n̂−l p)βieλit

−
n̂

∑
i=n̂−l p+1

ei−(n̂−l p)βi +d,

=
n̂

∑
i=n̂−3p+1

ei−(n̂−l p)βieλit −
n̂

∑
i=n̂−3p+1

ei−(n̂−l p)βi +d,

(31)
with xa0 = 0, α = 0, which implies that n̂− l p terms are anni-
hilated at the system output y(t), t ≥ 0, and the remaining l p
number of terms are distributed evenly into the p components
of y(t), t ≥ 0 [Schmid and Ntogramatzidis (2010)].

Now, using Lemma A.2 of Schmid and Ntogramatzidis (2010),
we can identify conditions to check the monotonicity of (31).
Let λ1 < λ2 < λ3 < 0 and define

f (t) , β1eλ1t +β2eλ2t +β3eλ3t . (32)
Note that f (t) has a sign change for some t > 0 if and only if
one of the following conditions hold:

i) β1β2 > 0, β1β3 < 0, and |β1 +β2|> |β3|.
ii) β2β3 > 0, β1β2 < 0, and |β1|> |β2 +β3|.

iii) (a) β1β3 > 0, β1β2 < 0, and |β2| ≥ |β1 +β3|;
(b) β1β3 > 0,β1β2 < 0,|β2| < |β1 + β3| and t∗ > 0, and

|gc(t∗)| ≥ |β1 +β2 +β3|, where
t∗ = 1

λ3−λ1
ln

(
β1(λ2−λ1)
β3(λ3−λ2)

)
and gc(t)= β1(1−e(λ1−λ2)t)+

β3(1− e(λ3−λ2)t).

Conditions i)–iii) give necessary and sufficient conditions under
which an output of the form (32) changes sign [Schmid and
Ntogramatzidis (2010)].

Even though the aforementioned design is based on the lin-
earized model, the closed-loop is implemented using the mea-
sured variables BIS(t), t ≥ 0, and EMG(t), t ≥ 0, which are
nonlinear functions of the system states. Hence, we use a hybrid
extended Kalman filter (EKF) to estimate the system states that
are required for state feedback. The discrete-time samples of
the measured outputs BIS(t), t ≥ 0, and EMG(t), t ≥ 0, at the
kth time step is given by

yk = [BIS(x(kT )), EMG(x(kT ))]T , k = 1,2, . . . , (33)
where T is the sampling time.

2.3 The hybrid extended Kalman filter [Simon (2006)]

Based on the continuous-time dynamics (11), discrete-time
measurement (33), and including the process and measurement
noise, we have

ẋ(t) = Ax(t)+Bu(t)+w(t), x(0) = x0, t ≥ 0,

yk = h(xk)+ vk, k = 1,2, . . . ,

where xk = x(kT ), w(t)∼N (0,Q) is a continuous-time white
noise with covariance Q, and vk ∼ N (0,R) is a discrete-time
white noise with covariance R. The hybrid extended Kalman
filter for the above system is given as follows:

(1) Initialize the filter as follows: x̂+
0 = E[x0] and P+

0 =
E[(x0− x̂+

0 )(x0− x̂+
0 )T], where E[·] denotes expectation.

(2) For k = 1,2, . . ., perform the following:
(a) Integrate the continuous-time model of the state esti-

mate and its covariance as follows:
˙̂x(t) = Ax̂(t)+Bu(t), x̂((k−1)T ) = x̂+

k−1,

Ṗ(t) = AP(t)+P(t)AT +Q, P((k−1)T ) = P+
k−1,

where (k− 1)T ≤ t ≤ kT , x̂+
(k−1) and P+

(k−1) are the
initial conditions at the beginning of this integration
process and at the end of this integration we have
x̂−k = x̂(kT ) and P−k = P(kT ).

(b) At time k, incorporate the measurement yk into the
state estimate and estimation covariance as follows:

x̂+
k = x̂−k +Kk

(
yk−h(x̂−k )

)
, (34)

P+
k = (I−KkJk)P−k , (35)

where Kk = P−k JT
k (JkP−k JT

k + R)−1, Jk is the partial
derivative of h(xk) with respect to xk evaluated at x̂−k .

3. RESULTS AND DISCUSSION

For our simulations, we consider two cases. Namely, (1) a
design for the controller and observer for each patient using
the respective patient model, and (2) a design for the controller
and observer using a nominal patient model.

Case 1: First, we consider the pharmacokinetic models of
10 patients obtained using the model (1)–(8) with parameters
and patient features given in Table 1 and 2, respectively. The
pharmacokinetic model of each patient is used to derive the
controller gain Ka and estimator gain Kk, k = 1,2, · · · . Patients
in the ICUs often require moderate sedation and analgesia for
several hours. Hence, for our simulations, we set the desired
target values to BIStarget = 60 and EMGtarget = 29.

The value of the parameters mi, i = 1,2, and 3, and constants
ci, i = 1, and 2, in (13) can be estimated using the multiple
linear regression method. The patient response for different
combinations of effect-site concentrations cS

eff(t), t ≥ 0, and
cA

eff(t), t ≥ 0, are obtained using the pharmacodynamic model
(9) and (10). For regression, we set the values of the pharma-
codynamic parameters to CS

50 = 3.1 µg/ml, CA
50 = 34 ng/ml,

and γ(φ(t)) = 0.9, and the range of effect-site concentrations to
cS

eff(t) = [0, 30] µg/ml and cA
eff(t) = [0, 25] ng/ml. The value

of U50(φ(t)), t ≥ 0, in (9) is calculated using the approximation
U50(φ(t))≈ 1−θφ(t)+θφ 2(t), where θ = 0.22. Using a linear
regression, we obtain m1 = −1.3263× 104, m2 = −1.1910×
106, m3 = 1.5561×104, c1 = 84.98, and c2 = 0.0068.

Table 2. Patient features used to generate 10 simu-
lated patients. Pharmacodynamic parameters of all
the 10 patients are set to CS

50 = 3.1 µg/ml, CA
50 =

34 ng/ml, γ(φ(t)) = 0.9, and θ = 0.22 [Ionescu
et al. (2014)].

Patient No. Age [years] Height [cm] Weight [kg] lbm
1 56 160 88 49.39
2 48 158 52 39.60
3 51 165 55 42.40
4 56 160 65 45.12
5 64 146 60 39.20
6 59 159 110 46.86
7 29 163 59 43.73
8 45 155 58 41.33
9 51 163 55 41.99

10 32 172 56 44.23
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As mentioned earlier, for Case 1, we use the pharmacological
features of the simulated patients 1 to 10 given in the Table 2
however, for brevity, we present the calculations involved in the
design of nonovershooting controller for Patient 1. Using the
system dynamics (1)–(8) and (13) we calculate the values of the
system matrices Aa,Ba, and Ca. The controllability matrix with
respect to the pair (Aa,Ba) has full rank, and hence, the system
is controllable. The stable invariant zeroes zi, i = 1, . . . , n̂− l p,
in the LHP are calculated using (19), which, for Patient 1, are
z1 = −0.1986, z2 = −0.0107, z3− 0.3513, and z4 = −0.0687.
With 4 zeroes in the LHP, we have n̂− l p = 4, where n̂ = 10,
p = 2, and l = 3. As explained in Section 2, we use the stable
LHP zeroes of the open loop system given by zi, i = 1, . . . ,4,
as the desired closed-loop poles of the system i.e. zi = λi,
i = 1, . . . ,4. Since the system is completely controllable, we can
arbitrarily choose the remaining 6 poles such that the closed-
loop system is asymptotically stable. We choose the remaining
closed-loop poles λi, i = 5, . . . ,10, to be λ = [−0.7125, −
0.5445, −0.7139, −0.5510, −0.4, −0.9]. Now, using (20),
we get si = 0, for i ∈ {1, . . . ,4}, si = e1, for i ∈ {5,6,7},
and si = e2, for i ∈ {8,9,10}. Notice that, since si = 0, for
i ∈ {1, . . . ,4}, the corresponding closed-loop mode associated
with λi, i ∈ {1, . . . ,4}, does not appear at the system output.

Now, using (30) we get
β = [ β1 β2 β3 β4 β1,1 β1,2 β1,3 β2,1 β2,2 β2,3 ]

= [ 0 0 0 0 −4.128×104 446.46 4.086×104 1.961 −1.886 −0.362 ] .
Next, to check the system output for sign changes, we consider
the exponential term in (31) given by ∑n̂

i=n̂−3p+1 ei−(n̂−l p)βieλit

and use value of β to define[
β1,1eλ1,1 +β1,2eλ1,2 +β1,3eλ1,3

β2,1eλ2,1 +β2,2eλ2,2 +β2,3eλ2,3

]
,

[
f1(t)
f2(t)

]
. (36)

Note that fi(t), i = 1 and 2, is in the form of (32). Now, it can
be easily verified that none of the Conditions i)–iii) are met for
f1(t), t ≥ 0, and f2(t), t ≥ 0, with β given, and hence, (36) does
not possess any sign changes implying that system output (31)
is monotonic.

It is clear from Figures 1 and 2, that the responses of all 10
patients are monotonic without any overshoot. All 10 patients
have similar responses due to the fact that the closed-loop poles
λi, i = 5, . . . ,10, are chosen to be the same for all the 10
patients. Moreover, since the pharmacodynamic parameters for
all the 10 patients are assumed to be the same, the values of the
effect-site concentrations that are required to track given target
values are the same for all the patients; see Figure 1.

Case 2: To analyze the robustness of the nonovershooting con-
troller to pharmacokinetic and pharmacodynamic variability
from the nominal model (Patient 1), we consider 10 patients
with parameters given in Table 3. We use the controller gain
Ka and estimator gain Kk, k = 1,2, · · · , derived using the model
of Patient 1 to control the continuous infusion of propofol and
remifentanil in Patients 11 to 20. To ensure that the infusion
rates are positive, we use the control input u(t) = max{0,u(t)},
t ≥ 0. Figures 3 and 4 show the responses of the 10 patients with
different pharmacokinetic and pharmacodynamic parameters.
Moreover, note that the controller is designed based on the
approximated linear pharmacodynamic model given by (13).
Hence, Figures 3 and 4 show an achieved robustness of the
proposed nonovershooting controller with respect to interpa-
tient variability. Next, to quantify the performance of the
proposed nonovershooting controller for closed-loop control
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Fig. 1. Control inputs versus time for the 10 simulated patients
(Case 1).
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Fig. 2. BIS(t) and EMG(t) versus time for the 10 simulated
patients, BIStarget = 60, EMGtarget = 29 (Case 1).

Table 3. Patient features and pharmacodynamic
parameters of the 10 simulated patients.

No.
Age

[years]

Height

[cm]

Weight

[kg]

CS
50

[µg/ml]

CA
50

[ng/ml]
γ θ

11 56 160 88 3.1 34 0.9 0.22
12 48 158 52 2 34 0.8 0.3
13 29 163 59 4 33 0.9 0.22
14 64 146 90 2 39.4 0.8 0.15
15 68 158 113 4 39 0.9 0.22
16 50 161 68 3.1 34 0.9 0.22
17 68 160 88 3.1 34 0.7 0.1
18 70 161 78 3 32 0.8 0.20
19 73 162 75 3.2 34 0.9 0.21
20 45 155 58 3 33 0.85 0.22

of multiple drugs, we can use the median performance error
(MDPE), median absolute performance error (MDAPE), root
mean square error (RMSE), interquartile range (IQ), mini-
mum and maximum values of the controlled variable (min-
max), induction duration (ID), percentage undershoot (US),
percentage overshoot (OS), and percentage of time in adequate
range (PTAR) [Soltesz et al. (2013)]. The instantaneous perfor-
mance error is defined as PEi( j) , Measured Value( j)−Target Value

Target Value ×
100, where i ∈ {1, . . . ,10} represents the ith patient, j =
1, . . . ,N, represents the set of PE measurements for an indi-
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Fig. 3. Control inputs versus time for the 10 simulated patients
(Case 2).
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Fig. 4. BIS(t) and EMG(t) versus time for the 10 simulated
patients, BIStarget = 60, EMGtarget = 29 (Case 2).

vidual, N is the number of measurements for each patient,
and Measured Value and Target Value refer to the measured
and target values of the BIS and EMG. The MDPE gives
the control bias observed and is computed by MDPEi =
median(PEi( j)), whereas MDAPEi = median(|PEi( j)|), and

RMSEi =

√
∑N

j=1(Measured Value( j)−Target Value)2

N . Induction phase
duration (ID) is the time elapsed from the start of drug admin-
istration to the time when the drug effect falls to and remains
within the range of target values BIStarget±10 and EMGtarget±
3 for 30 seconds. Percentage undershoot (US) is defined for the
controlled variable BIS as USi = max j

(
BIStarget−BIS( j)
BIS0−BIStarget

)
×100,

and percentage overshoot (OS) is defined for the controlled
variable EMG as OSi = max j

(
EMG( j)−EMGtarget

EMGtarget

)
×100.

Table 4 shows the performance metrics of the proposed
nonovershooting controller for the controlled variables BIS and
EMG. In this table, the range of values of the defined perfor-
mance metrics are given for Patients 11 to 20 (Case 2). Note
that the amount of inaccuracy that is reflected in the values
of the performance metrics for the 10 patients are within the
acceptable performance range [Ionescu et al. (2014), Soltesz
et al. (2013)].

Table 4. Performance metrics for controlled vari-
ables BIS and EMG (Case 2).

Performance Metrics
Controlled Variables

BIS EMG
MDPE [%] −0.0090±0.0085 0.0027±0.0329

MDAPE [%] 2.817±0.48 7.87±0.48
Min − Max 58.95−63.12 25.99−29.22

Interquartile Range 0.029 0.0001
RMSE 4.91±0.48 0.050±0.0006

ID [min] 4±0.6 9.3±1.2
US/OS [%] 0−2.625 0−0.75
PTAR [%] 96.8±0.55 92.25±1

4. CONCLUSIONS

In this paper, a nonovershooting controller for the simultaneous
infusion of sedatives and analgesics is proposed. Simulation
results using 20 patients with varying pharmacokinetic and
pharmacodynamic parameters show that the proposed nonover-
shooting controller design method is promising. Our simulation
results show that the nonovershooting controller is robust to
system parameter uncertainties. Including additional vital phys-
iological parameters such as heart rate and respiratory rate in
the controller design will be considered as a future research
direction for this work.
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