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Abstract: Existing tuning formulas for PID based on relay feedback experiments are derived
from continuous-time systems theory, even though most such systems are implemented digitally.
These formulas rely on the fact that, according to this continuous time theory, the relay feedback
experiment allows the identification of the ultimate point of the plant’s frequency response -
the point at which its Nyquist plot crosses the negative real axis. We have shown in a recent
paper (Bazanella and Parraga (2016)) that a sampled relay feedback experiment may exhibit
various limit-cycles at possibly quite different frequencies, even for quite reasonable sampling
rates - that is, well within the ranges recommended by sampling theory and control textbooks.
In this paper we show the deleterious effect of this reality on the tuning of PID controllers and
propose an improvement to the tuning formulas to overcome this limitation.

1. INTRODUCTION

Huge amounts of literature have been produced on PID
tuning rules, and a myriad of methods have been pro-
posed and successfully applied - see Astrom and Hagglund
(2006) for a thorough overview. Extensions of these meth-
ods continue to appear, including multivariable plants
(Campestrini et al. (2009)), resonant controllers (Pereira
and Bazanella (2015)) and event-based controllers (Beschi
et al. (2013)), to name just a few. These methods and
extensions consist in variations of the methods proposed
in the seminal work Ziegler and Nichols (1942), where
a tuning method was proposed that consists in causing
an oscillation in closed-loop, measuring the oscillations’
frequency and amplitude and then applying simple for-
mulas involving these measurements for each controller
parameter. In this paper we shall refer to it as the classical
forced oscillation (CFO) method. In another seminal work
(Astrom and Hagglund (1984)), the CFO method has been
improved and reinvigorated by the incorporation of a relay
feedback experiment and by the explicit consideration of
gain and phase margins in the design.

The CFO method is justified upon a continuous time
analysis of the feedback loop. As such, its sampled-data
implementation will provide the expected performance as
long as the sampling rate is fast enough, but will most
likely break down otherwise. Very little attention has been
given in the literature for the effect of sampling in the
performance of Ziegler-Nichols like tuning methods (Tajika
et al. (2015) and Laskawski and Wcislik (2015) are rare
exceptions) and no discrete-time counterpart has been
developed for it.
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In this paper we present the development of a discrete-time
version of the CFO method, which we have baptised as
discrete-time forced oscillation (DFO) method. First, we
set the stage with a precise definition of the problem and
of the CFO method in Section 2 and with the application
of the CFO to a simple case study in Section 3. The
reader will see that the CFO works perfectly fine in this
example for very fast sampling rates, but also that it
may result in completely unacceptable performance when
the sampling period is about 20 times smaller than the
dominant time constant. That the method fails for such a
simple example even for sampling rates well within the
range recommended in most control systems textbooks
provides motivation for developing our new method. Then
we derive our method in Section 4, under the same
rationale as the CFO but using discrete-time theory. The
case study is revisited in Section 5, showing that the
DFO provides appropriate performance when the CFO
had failed. Finally, concluding remarks are given in Section
6.

2. PRELIMINARIES

2.1 The plant

We consider linear time-invariant single-input-single-putput
systems in continuous time, which can be described by an
input-output relationship

y(s)

u(s)
= g(s) (1)

where y(s), u(s) and g(s) are the Laplace transforms of the
plant’s output, input and impulse response, respectively.
It is assumed that the transfer function g(s) is rational
and strictly proper.
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Fig. 1. Relay feedback tuning in a sampled-data plant: S
is either a PID, in normal operating mode, or a relay,
in tuning mode

When the input and output of the continuous-time system
(1) are sampled with a zero-order-holder, the resulting
discrete-time system can be described by the input-output
relationship:

Y (z)

U(z)
= G(z) (2)

where Y (z) and U(z) are the Z transforms of the plant’s
output and input, respectively, and

G(z) = (1− z−1)Z{L−1[
g(s)

s
]Ts}

is the plant’s sampled transfer function, L−1[ g(s)s ]Ts stand-
ing for the sampled version, with a sampling period Ts, of

the inverse Laplace transform of g(s)
s .

2.2 The controller

The plant is controlled by a discrete-time LTI controller,
that is:

E(z) =R(z)− Y (z) (3)

U(z) =C(z)E(z) (4)

where R(z) and E(z) are the Z-transforms respectively
of the reference and of the tracking error, and C(z) is the
controller’s transfer function. In this paper we consider the
tuning of PID controllers in the so-called parallel form

CPID(z) = K[1 +
1

Ti

Ts
(z − 1)

+ Td
(z − 1)

Tsz
] (5)

where Ti is called the integral time, K is the proportional
gain and Td is called the derivative time; these are the
parameters to be tuned. The parallel form is the standard
representation for PID controllers in the literature of
tuning through empirical (that is, Ziegler-Nichols-like)
methods. We also note that equation (5) is obtained by the
application of the Euler integration rule to the standard
continuous-time form.

2.3 Relay feedback tuning - the classical forced oscillation
method

The CFO is a model-free method, and is useful in situa-
tions where a good model is not available. It is conceived
based on continuous time theory and relies solely on the
knowledge of the ultimate point of the plant’s frequency
response. The ultimate point of a given transfer function
is the point at which its Nyquist plot crosses the negative
real axis. The characteristics of the ultimate point are the
ultimate frequency ωu and the ultimate gain Ku, which
are defined as

ωu = min
ω≥0

ω : ∠g(ω) = −π

Ku =
1

| g(ωu) |
.

With these definitions, the CFO method can be summa-
rized as follows.

(1) identify the ultimate point of the plant’s frequency
response, that is, determine ωu and Ku;

(2) choose the parameters of the controller such that

c(ωu) = −Kup, (6)

where p is a prespecified location in the complex plane
and c(s) is a continuous time controller.

The first step of the method is usually performed by
means of a relay feedback experiment, which consists
in a closed-loop experiment with the following nonlinear
control action:

u(t) = d sign(e(t)) + b. (7)

In (7) sign(·) is the sign function (sign(x) = 1 for positive
x and sign(x) = −1 for negative x), d ∈ <+ is a parameter
to be chosen and b ∈ < is the bias. The bias parameter b
must be adjusted so that the oscillation is symmetric. Once
a symmetric oscillation is obtained, its amplitude Au and
period Tu are measured and the ultimate quantities are
estimated from (Astrom and Hagglund (2006))

Ku =
4d

πAu
ωu =

2π

Tu
(8)

The second step of the method is accomplished by solving
equation (6) for the controller’s parameters with the cho-
sen location p. Different locations p have been proposed
over the years, each one aiming at providing different
transient performance and stability margins for most typi-
cal plants. The original Ziegler-Nichols tuning formulas in
Ziegler and Nichols (1942) correspond to p1 = −0.4+0.08
for PI controllers and p2 = −0.6−0.28 for PID controllers.

The method can be illustrated as in Figure 1, which
represents two operating modes: tuning and operation.
In the tuning operating mode the element S is a relay,
described by equation (7), and in the the normal operation
the element S is a PID controller described in equation (5).

Plants that do not possess an ultimate point 1 are not
amenable to application of the CFO, but an extension has
been proposed in Bazanella et al. (2017), which has been
called the Extended Forced Oscillation Method (EFO).
There, a different point of the frequency response is iden-
tified and then this point is shifted to a specified location.
Otherwise stated, the design relies in the generalisation of
equation (6) to

c(ω120) = −K120p, (9)

where ω120 is the point at which ∠g(ω120) = −120o,
K120 = 1

|g(ω120)| and p1 = 1∠ − 130o for PI and p2 =

1∠ − 120o for PID. These design parameters will, along
with those of the CFO method, serve as a basis for our
developments in Section 4.

1 This is the case of all minimum-phase stable second-order plants
and most plants with relative degree smaller than three, for instance.
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Fig. 2. Limit-cycle observed in the sampled-data plant -
input u(t) in blue and output y(t) in red

3. A MOTIVATING EXAMPLE

3.1 CFO tuning

In this Section we present a simulation case study that
illustrates the application of the classical Ziegler-Nichols
tuning. A given sampled-data plant, with Ts = 50 ms,
has been put under relay feedback with unit amplitude
(d = 1), resulting in the input-output data presented in
Figure 2. The transfer function of the plant is never used
at any step of the PID design, which is based exclusively
on the data collected in the relay feedback experiment
(that is, without knowledge of a plant model). Accordingly,
we postpone the presentation of the model used for the
simulations to where it is relevant - the next Subsection.

A symmetrical oscillation with amplitude Ao = 0.98 and
period To = 0.8 s is observed in Figure 2. The application
of the CFO method to these data results in the following
tuning for a PID:

K = 0.78 Ti = 0.4 s Td = 0.1 s (10)

The step response of the closed-loop system with the
controller (5) is presented in Figure 3. The performance
is typical of Ziegler-Nichols tuning, with large overshoot
and settling time somewhat smaller than the plant’s open-
loop settling time. Indeed, an ideal - that is, continuous-
time - implementation of the PID with this tuning would
result in the performance given in Figure 4, which is
similar but somewhat less oscillatory. The closed-loop
performance is only slightly deteriorated by the sampled-
data implementation with this particular sampling time,
and one might be tempted to think that it is alright to
apply the CFO method for this plant.

However, as shown in Bazanella and Parraga (2016), a
sampled-data relay feedback often exhibits several limit-
cycles. Which limit-cycle is observed in a given experiment
depends on the initial condition - that is, the plant’s
state at the beginning of the experiment. The purpose
of the relay experiment is to obtain an oscillation at the
ultimate frequency of the plant, so that this point of the
frequency response is identified from the experiment. If
several oscillations with different frequencies are possible,

Fig. 3. Closed-loop step response with the PID tuning
given in (10)

Fig. 4. Closed-loop step response with the PID tuning
given in (10) with a continuous-time controller im-
plementation

obviously they can not all be at the ultimate frequency,
so one may end up identifying a different point of the
frequency response, far away from the ultimate point. In
this case, applying the CFO method is not justified, and
one can not expect to obtain a reasonable performance.

For this plant, another relay feedback experiment has
been performed with a different initial condition, yielding
the result presented in Figure 5, where a symmetrical
oscillation with amplitude Ao = 0.38 and period To = 0.5 s
is observed. PID tuning by the CFO method based on this
experiment yields

K = 1.96 Ti = 0.25 s Td = 0.06 s (11)

which results in the closed-loop behavior shown in Figure
6; the performance obtained is quite different from the one
previously obtained and far from satisfactory.

In conclusion, the CFO method does not provide consis-
tent tuning for a plant sampled at moderately low rates,
even for sampling at rates usually considered appropriate.
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Fig. 5. A different limit-cycle observed in the same
sampled-data plant - input u(t) in blue and output
y(t) in red

Fig. 6. Closed-loop step response with the PID tuning
given in (11)

It is important to notice that the sampling time in the
present example is well within the range recommended in
control textbooks. Indeed, the step response of the plant
is presented in Figure 7, where it is seen that its dominant
time constant is twenty times larger than the sampling
time.

3.2 Analysis

For the purpose of analysis, we will need the transfer
function of the plant:

G(s) =
5, 000

s3 + 102s2 + 201s+ 100
.

This particular plant with this particular sampling time
may exhibit no less than seven different limit-cycles, with
periods ranging from 0.5 s to 1.1 s, as can be easily deter-
mined by any one of the methods described in Bazanella
and Parraga (2016). Clearly, such distinct values of os-
cillation’s period will lead to very different tunings, from

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

50

Time (seconds)

A
m

p
li
tu

d
e

Fig. 7. Open-loop step response of the plant; the settling
time is about 120 samples

which one can expect very different performances. Which
one will be observed in a given experiment depends on the
plant’s state at the beginning of the experiment and, as we
just illustrated, not all of them will provide data that will
result in reasonable PID tuning. It is impossible to predict
which limit-cycle will be observed without knowledge of a
good model for the plant, which in a practical application
of the CFO method is not available. 2 Thus, obtaining a
good tuning from the CFO in a situation such as in the
present case study is, for all practical purposes, a random
occurrence.

One can expect a good tuning from the CFO method if
the identified point of the frequency response is very close
to the ultimate point. The Bode diagram of the sampled-
data plant is given in Figure 8, where the frequencies corre-
sponding to the seven possible limit-cycles are indicated.
It is seen that some of them correspond to frequencies
very close to the ultimate frequency, whereas others are
considerably far from it. As discussed above, we can not
count on observing one of the “good” oscillations. What
we can do from this analysis is to provide a correction in
the tuning formulas taking into account the phase of the
transfer function at the identified frequency, and this is
the basis of the improved method we present in the next
Section.

4. THE DISCRETE-TIME FORCED OSCILLATION
METHOD - DFO

In this Section we provide the aforementioned correction in
the CFO method, and we call this extension the Discrete-
Time Forced Oscillation (DFO) method. The rationale
of the tuning in the DFO will be the same as in the
CFO method: identify one point of the frequency response
then shift the identified point to some specific location
in the complex plane. But the identified point is not the
ultimate point, that is, the point at which the plant’s
frequency response reaches −π. Instead, the identified
point will be one at which the plant’s frequency response
is close to −π, and we need to account for this phase

2 If a good model is available one should use it for model-based
design instead of tuning the PID by the CFO method
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Fig. 8. Bode diagram of the sampled-data plant; the dots indicate the frequencies of the oscillations that can be observed
in the relay feedback experiment, with the corresponding periods

difference in the location to which the identified point will
be shifted. Since the tuning formulas are calculated for a
given location, they will now become a function of three
variables: magnitude of the oscillation and frequency of the
oscillation, which are the usual ones in the CFO method,
plus the phase of G(eΩo), where Ωo is the frequency of the
oscillation.

Mathematically, the controller’s tuning will be done such
that

C(eΩo)G(eΩo) = pB(φ) (12)

where φ
∆
= ∠G(eΩo) and pB(φ) is the desired location in

the complex plane. Based on the Ziegler-Nichols point and
the Bazanella-Pereira-Parraga point proposed for small
order plants in Bazanella et al. (2017), we propose the
following interpolation of these points:

pB(φ) = ρ(φ) eθ(φ) (13)

ρ(φ) =
5

4π
φ+ 1.9

θ(φ) = φ+
π

6
.

For ease of notation, let us define TI
∆
= Ti

Ts
and TD

∆
=

Td
Ts

; these are the integral time and the derivative time,
respectively, now expressed in number of samples instead
of seconds. With these definitions, the frequency response
of the PID controller can be written as:

C(eΩ) =K(1 +
1

TI

eΩ

eΩ − 1
+ TD

eΩ − 1

eΩ

=K(1 +
1

TI

eΩ

eΩ − 1

e−Ω − 1

e−Ω − 1
+ TD(1− e−Ω)

=K(1 +
1

TI

1− eΩ

2− 2 cos(Ω)
+ TD(1− e−Ω)

=K[1 +
1

TI

1− cos(Ω)−  sin(Ω)

2(1− cos(Ω))
+

TD(1− cos(Ω) +  sin(Ω))]

=K[1 +
1

2TI
+ TD(1− cos(Ω))] +

K sin(Ω)[TD −
1

2TI(1− cos(Ω))
]. (14)

Inserting (14) and (13) into (12) gives, after some manip-
ulation:

[TD − 1
2TI(1−cos(Ωo)) ] sin(Ωo)

1 + 1
2TI

+ TD(1− cos(Ωo))
= tan(

5π

36
) (15)

If a PI controller is being tuned, then TD = 0 and
the above equation allows to calculate TI . If a PID is
being tuned, then we have two unknowns and only one
equation, just like in the CFO. This extra degree of
freedom is removed in the CFO by imposing TI = 4TD,
and we will adopt this same criterion here. Substituting
this relationship into (15) yields a quadratic equation in
TD whose solution is given by:

TD =
8α+

√
(8α)2 + 32(1− cos(Ωo))(1− α)(1 + α)

16(1− α)(1 + α)
(16)

where α
∆
=

tan π
6 (1−cos(Ωo))

sin(Ωo) . 3

Once TD and TI = 4TD have been determined, K can be
obtained from

K[TD −
1

2TI(1− cos(Ωo))
] sin(Ωo) =

4dρ(φ)

πAo
sin(

5π

36
) (17)

3 Note that α > 0 and that α < 1 ∀ Ωo ∈ (0, π/2)
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To (s) Ao φ K TI TD
0.5 0.377 −196o 1.1 0.35 0.088

0.6 0.553 −190o 0.87 0.40 0.10

0.7 0.757 −185o 0.70 0.45 0.11

0.8 0.976 −181o 0.58 0.50 0.13

0.9 1.24 −178o 0.49 0.56 0.14

1.0 1.54 −175o 0.41 0.61 0.15

1.1 1.85 −172o 0.36 0.67 0.17

Table 1. The seven different limit-cycles ob-
served in the relay feedback experiment and

their corresponding tunings by the DFO

or from

K[1 +
1

2TI
+ TD(1− cos(Ωo))] =

4dρ(φ)

πAo
cos(

5π

36
) (18)

The DFO method can thus be summarized in the following
steps.

(1) perform the relay feedback experiment
(2) measure Ao and To and calculate Ωo = 2π

No
(No = To

Ts
being the period of oscillation in samples)

(3) determine φ = ∠G(eΩo) (which can be done by
Discrete-Time Fourier Series)

(4) calculate ρ(φ) and θ(φ) from (13)
(5) solve equation (15) with TD = 0 for PI and TI = 4TD

for PID
(6) determine K from (17) or (18)

5. REVISITING THE CASE STUDY

Let us now present the application of the DFO for the
case study. Any one of seven different limit-cycles can be
observed in the relay feedback experiment, and we need
the tuning to provide proper performance for any of them.
The periods and amplitudes of the seven limit-cycles are
presented in Table 1, along with the resulting PID tunings
obtained by the DFO in each case. One can see that the
tunings are rather different from each other, and still they
are all adequate. Indeed, the step responses of the closed-
loop system with each one of the controllers obtained by
the DFO are shown in Figure 9, where it is seen that all
of them provide adequate performance - in the sense that
they are similar to the typical performance of continuous-
time Ziegler-Nichols tuning.

6. CONCLUSIONS

We have shown that tuning methods based on relay feed-
back risk failing in sampled-data implementations even for
quite reasonable sampling rates. We have provided a new
method - the Discrete-Time Forced Oscillation method
- that is based on the same rationale as the classical
methods but takes into account the peculiarities found in
sampled-data relay feedback systems to improve the tun-
ing, recovering the performance characteristics of Ziegler-
Nichols-like tuning in continuous-time. The application
of our new method to a case study where the Classical
Forced Oscillation method fails illustrated its potential.
The method’s basic formulas (13) have provided appropri-
ate performance for the various examples we have studied,
but more testing with larger sets of case studies are under
way, whose results are likely to lead us to fine tuning of
these formulas to suit larger classes of plants.

Fig. 9. Closed-loop step responses with the tunings in
Table 1 - larger φ corresponds to smaller overshoot
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