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Abstract: This work presents some guidelines for tuning PID controllers in order to increase
robustness within a hierarchical control structure focused on load disturbance rejection, in which
the process’ mathematical model is unknown. The proposed structure consists in two control
loops: an inner PID control layer tuned using only data collected from the process, whose set
point signal is governed by an outer predictive control layer, with the purpose of increasing
closed-loop performance and enabling the specification of constraints. Some simulation results
are presented, in which it is shown that the appropriate tuning of the PID controller allows the
outer loop to correctly predict the inner loop behavior and therefore provide better disturbance
rejection than the data-based tuned PID alone.
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1. INTRODUCTION

Disturbance rejection is a major source of concern in in-
dustrial control loops, occasionally being more important
than set point tracking. The literature on model-based
control methods emphasizing disturbance rejection is well
consolidated (Chen and Seborg, 2002; Shamsuzzoha and
Lee, 2007; Szita and Sanathanan, 1996).

In terms of modern data-based control methods, the ma-
jority of them were developed for addressing the reference
tracking problem, such as Virtual Reference Feedback
Tuning (VRFT) (Campi et al., 2002). Literature on data-
driven methods for disturbance rejection or attenuation is
still relatively small: in Jeng and Ge (2016), an adaptation
of the VRFT method is used, where the reference model
choice takes into account the desired disturbance dynam-
ics. Two and three degrees of freedom VRFT-tuned con-
trollers are presented in Guardabassi and Savaresi (1997)
and Rojas et al. (2011), where feedforward control struc-
tures are employed. In Eckhard et al. (2018), the Virtual
Disturbance Feedback Tuning (VDFT) is presented, which
proposes a data-driven model-matching method for tuning
a fixed structure controller, in a similar fashion as in
VRFT.

The VDFT method assumes that the load disturbance
signal cannot be measured and is able to provide in
closed-loop a disturbance behavior close to – or, under
certain ideal conditions, equivalent to – the desired one,
represented by a disturbance reference model. Although
disturbance rejection is improved by the method, reference
tracking performance may be harmed. A manner of im-
proving overall closed-loop performance is to implement an

? This work has been supported by CNPq - Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico.

outer advanced control loop, acting as a set point governor
for the inner VDFT-tuned loop. A similar hierarchical con-
trol structure was presented in Piga et al. (2017), where the
outer predictive control layer assumes the desired reference
model as the actual model of the inner linear parameter-
varying control layer, designed to match a desired closed-
loop model. The work aims to manage reference tracking
and does not address the scenario in which the assumption
is not valid, i. e. the reference model is not achievable by
the inner control structure.

This work aims to adapt the hierarchical control structure
from Piga et al. (2017) for disturbance rejection and to
propose adaptations in the inner controller design so as
to increase closed-loop robustness, anticipating scenarios
when the reference model is not achievable. Employing
the VDFT method to tune the inner controller, the dis-
turbance reference model is partly loosened in a flexible
formulation of the VDFT, allowing a tighter matching of
the desired model. Also, an iterative experimental project
is suggested in order to improve cost function shaping,
despite a sub-optimal filter choice.

This work is divided in the following manner: section 2
presents the problem formulation and the proposed control
structure. Section 3 describes the design steps for the
inner PID control, the proposed adaptations for increasing
robustness and the outer predictive control. Finally, in
section 4, a simulation example is exploited in order to
illustrate the proposed control approach, and section 5
presents some conclusions from the work.

2. PROBLEM FORMULATION

Consider a discrete-time linear time-invariant SISO system
described as

y(t) = G(q)u(t) + ν(t) (1)
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where u(t) is the process’ input, y(t), the process’ output,
ν(t), the output noise, which is characterized as ν(t) =
H(q)e(t) with e(t) a white-noise process with variance λ2

e,
and G(q), its minimum-phase transfer function, which
is assumed to be unknown. Also, q is the discrete shift
operator (qx(t) = x(t + 1)). It is also assumed that,
in closed-loop, the process’ input is susceptible to load
disturbances d(t), as can be seen in the inner loop in Fig.
1.

Fig. 1 shows the hierarchical control structure, where
w(t) is the reference signal that should be tracked by
y(t). The outer predictive control layer is responsible
for managing the inner reference control r(t) delivered
to the inner control layer, represented by M, where
C(q, ρ) is a controller parametrized in ρ and designed
for disturbance rejection. The choice of using an MPC
strategy in the outer control loop is motivated by the
need to achieve high closed-loop performance and handle
constraints (Piga et al., 2017). The purpose of this control
strategy is to handle disturbance rejection in a high
performance scheme, while still coping with reference
tracking and input/output constraints, and considering
only data measured from the plant. In order to do so,
the idea is to design both controllers C(q, ρ) and MPC
in a two-step procedure without deriving a process model
G(q).

MPC C(q, ρ) G(q)
w(t) r(t) + u(t)

d(t) ν(t)

+ y(t)

−

M

Fig. 1. Hierarchical structure diagram.

Now one of the main challenges of the proposed control
structure is to provide the outer model-based control loop
with a sufficiently exact model so as to represent the inner
loop behavior. With this intention, this work presents a
series of design choices to tune the inner controller through
a model matching problem using only measured data so it
results in a closed-loop behavior M very similar to the
desired one.

3. CONTROLLER DESIGN

The guidelines for the design of the inner loop and outer
loop controllers are described in this section.

3.1 Data-Driven PID controller

The Virtual Disturbance Feedback Tuning method con-
sists in an one-shot data-driven approach, which aims to
solve a model matching problem for disturbance rejection
(Eckhard et al., 2018). This problem considers a linearly
parametrized discrete-time controller C(q, ρ)

C(q, ρ) = ρT C̄(q), (2)

where ρ = [ ρ1 . . . ρn ]
T

is the parameters vector and C̄(q)
is an n−vector of transfer functions in q. The choice of
C̄(q) and n will determine the controller class employed

C = {C(q, ρ), ρ ∈ P ⊆ Rn}. Considering a PID controller
class, (2) can be rewritten as

C(q, ρ) = [ ρ1 ρ2 ρ3 ]


q2

q(q − 1)
q

q(q − 1)
1

q(q − 1)

 . (3)

In closed-loop, the expression for the system’s response is
given as

y(t) = Q(q, ρ)d(t) + T (q, ρ)r(t) + S(q, ρ)ν(t) (4)

with

T (q, ρ) ,
C(q, ρ)G(q)

1 + C(q, ρ)G(q)
, (5)

Q(q, ρ) ,
G(q)

1 + C(q, ρ)G(q)
, (6)

S(q, ρ) ,
1

1 + C(q, ρ)G(q)
. (7)

Let yd(t) be the desired closed-loop response to a given
disturbance d(t), and define Qd(q), the desired transfer
function, as in yd(t) = Qd(q)d(t). Now the usual model
matching problem consists in determining the vector of
parameters ρ, which minimizes

min
ρ
JDM (ρ)

JDM (ρ) ,
∑
t

{[Q(q, ρ)−Qd(q)]d(t)}2 . (8)

The ideal controller, which exactly solves the model-
matching problem in (8), is given by

Cd(q) = Q−1
d (q)−G−1(q). (9)

However as seen in (6), the termQ(q, ρ) depends on the un-
known process’ transfer function G(q). Instead, the VDFT
method proposes an alternative to (8) based on data col-
lected from the process. In order to do so, consider that a
set of measured input and output data ZN = {u(t), y(t)},
with t = 1, . . . , N , is available. From these data, a virtual
control signal is calculated as ūc(t) = u(t) − Q−1

d (q)y(t).
Now the VDFT problem consists in identifying the con-
troller C(q, ρ), whose input −y(t) results in an output
ūc(t), i.e.

min
ρ
JV D(ρ)

JV D(ρ) ,
N∑
t=1

{K(q)[ūc(t) + C(q, ρ)y(t)]}2
(10)

where K(q) is a pre-filter.

Since the controller is linearly parametrized, (10) can be
solved using the least squares method resulting in

ρ̂ =

[
N∑
t=1

φ(t)φ(t)T

]−1 [ N∑
t=1

φ(t)ūcK

]
(11)

where

φ(t) , C̄(q)K(q)y(t) (12)

ūcK , K(q)ūc(t) (13)

The solution of the least squares problem (11) exists and
is unique if the input signal u(t) is persistently exciting
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(pe) of order n (Bazanella et al., 2012). Considering a
noise-free framework, in the case when Cd(q) ∈ C, i.e.
∃ ρd such that C(q, ρd) = Cd(q), the solution given in (11)
results in ρd, independently of K(q). As a consequence,
JV D = JMD = 0 and the obtained closed-loop behavior
is identical to the desired one, Q(q, ρd) = Qd(q) and
T (q, ρd) = C(q, ρd)Qd(q). The prediction model for the
inner control loop used in the MPC layer is therefore exact.
When signals are corrupted by noise, an instrumental
variable approach is used (Eckhard et al., 2018). When
Cd(q) ∈ C, an unbiased estimate ρ̂IV is obtained through
(11), such that E [ρ̂IV ] = ρd.

In contrast, when Cd(q) /∈ C, not only is the ideal
situation JDM = 0 not achievable, but also the minimum
of JV D results different than that of JDM . The VDFT
method proposes choosing the filter K(q) properly so that
JV D ≈ JDM and therefore minimizing JV D corresponds
to minimizing JDM . In this work, new approaches are yet
developed so as to reduce JDM even more and to enable
the use of Qd(q) and T̂d(q) , Qd(q)C(q, ρ̂) as models of
the inner loop by the MPC.

3.2 Design of filter K(q)

The choice of filter K(q) is detailed in Eckhard et al.
(2018). Its purpose is to approximate the minima from
(8) and (10), when there is no controller C(q, ρ) within C
that satisfies JDM = 0. In this case, it is shown that the
optimal choice of K(q) must satisfy

|K(ejω)|2 = |Qd(ejω)Q(ejω, ρ)|2 Φd(e
jω)

Φy(ejω)
(14)

where Φy(ejω) is the spectrum of the measured output
signal and Φd(e

jω), the spectrum of the disturbance signal
one wishes to reject.

A practical choice of K(q) is suggested as K(q) = Qd(q),
considering some assumptions are satisfied (Eckhard
et al., 2018):

Assumption 1. |Q(ejω, ρ̂)| ≈ |Qd(ejω)|, i.e. the closed-loop
performance obtained with VDFT is close to the desired
one;

Assumption 2. y(t) and u(t) are collected in closed-loop,
with a controller C(q, ρ0);

Assumption 3. |Q(ejω, ρ0)| ≈ |Qd(ejω)|, i.e. the initial
closed-loop performance is close to the desired one.

3.3 Choice of Qd(q)

Depending on the process’ characteristics, e.g. the presence
of time-delay and non-minimum phase zeros, and the
controller class C employed, the chosen reference model
may not be achievable. However, a sensible choice of Qd(q)
allows the function JV D to be driven closer to zero.

Although Cd(q) does not necessarily belong to C, it is
advisable that Cd(q) be close to the controller class as
much as possible so a good closed-loop behavior can be
achieved. In Szita and Sanathanan (1996), some theorems
are presented in order to choose the reference model
so the ideal controller for a model matching problem is
proper and the resulting closed-loop, internally stable. The
developments are mostly dependent on previous knowledge

of the process, and data-based strategies have not yet
been developed to handle this design issue. The following
example illustrates the problem of obtaining a proper
Cd(q) such that Cd(q) ∈ C.
Example 1. Consider the process

G(q) =
0.01

q − 0.95
(15)

a PID controller class and a desired reference model for
step disturbance rejection

Qd(q) =
α(q − 1)

(q − 0.9)2
(16)

with α, a free parameter. Considering (9), the only value of
α for which the ideal controller Cd(q) is causal is α = 0.01,
the process’ numerator constant, in which case

Cd(q) =
15(q − 0.9333)

q − 1
(17)

is a PI controller and Cd(q) ∈ C, with ρ = [15,−14, 0]T .

Take the following expression, linking the ideal controller
and the reference model:

Qd(q) =
G(q)

1 + Cd(q)G(q)
=

nG(q)dCd(q)

dG(q)dCd(q) + nG(q)nCd(q)
(18)

where G(q) , nG(q)
dG(q) , with nG(q) and dG(q) coprime, and

Cd(q) , nCd(q)
dCd(q) , with nCd(q) and dCd(q) coprime as well.

In this work, the controller has a fixed PID structure,
therefore the only degrees of freedom in (18) lie on the
denominator, provided by nCd(q), and thus the numerator
of Qd(q) is fixed (by the fixed controller denominator) and
partly unknown (by the unknown process numerator). In
the example shown above, it is possible to notice how
the numerator of G(q) should appear in the numerator
of Qd(q), so that the controller Cd(q) belongs to the class
C.
Besides, assuming that G(q) is strictly proper and Cd(q),
proper, the relative degree of Qd(q) is given as

Γ[Qd(q)] = Γ[G(q)]− Γ[1 + Cd(q)G(q)]

= Γ[G(q)]−min{0,Γ[Cd(q)G(q)]}
= Γ[G(q)]

(19)

with Γ[·] is the relative degree operator (Gonçalves da Silva
et al., 2018a). Therefore Qd(q) should have necessarily the
same relative degree as G(q), once Γ[Cd(q)G(q)] > 0.

An approach to tackle the problem of choosing Qd(q) is
proposed in the following subsection, with a flexible adap-
tation of the VDFT method. Since usually performance
requirements are specified by setting the desired poles of
Qd(q), the denominator of Qd(q) is set accordingly, while
the numerator of Qd(q) is partly loosened.

3.4 VDFT flexible formulation

In this hierarchical formulation, the desired dynamics
translated in Qd(q) is not essential for the closed-loop
overall performance, since an outer advanced control is
used. Instead, the main concern lies in the inner control
loop design: to obtain a controller C(q, ρ) which minimizes
the model matching problem (8) and also provides the
outer loop with a representative model of the inner loop.
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The VDFT tuning method is hence adapted in a flexible
formulation, in which the numerator of the reference model
is parametrized as

Qd(q, η) = ηT F̄ (q) (20)

where η = [ η1 . . . ηp ]
T

is a vector of p parameters, and
F̄ (q), a p-vector of rational transfer functions. In this
manner, the poles of Qd(q, η) are still fixed for the desired
dynamics, yet the numerator remains free.

The VDFT problem in (10) should now be solved regard-
ing the variables η and ρ,

min
(ρ,η)6=(0,0)

JV Df (ρ, η)

JV Df (ρ, η) ,
N∑
t=1

{K(q)[Qd(q, η)(u(t) + C(q, ρ)y(t))

− y(t)]}2,

(21)

where ūc(t) was substituted by u(t) − Qd(q, η)−1y(t) in
(10) and the cost function was multiplied by Qd(q, η).
The solution of (21) is given iteratively, as developed in
Campestrini et al. (2011) for the VRFT method applied to
nonminimum phase systems. The least squares problem is
solved for η and ρ in an alternate fashion, for each iteration
i, as in

ηi = arg min
η
JV Df (ρi−1, η) (22)

ρi = arg min
ρ
JV Df (ρ, ηi) (23)

and initial values for ρ (or η) should be provided. Since
data is collected in closed-loop for the VDFT method, it is
suggested that C(q, ρ0) be chosen as the original controller
C(q, ρ0) (Gonçalves da Silva et al., 2018b).

Regarding the sub-optimality of choosing filter K(q) =
Qd(q), yet another adaptation is proposed. A first exper-
iment is conducted with whichever C(q, ρ0) is operating
in the loop, resulting in a sub-optimal controller C(q, ρ1)
and Qd(q, η1). In order to respect Assumption 3, this
work suggests the user to perform a second experiment
in closed-loop, now with C(q, ρ1). With the new collected
data, tuning should be improved and the resulting con-
troller should provide an even smaller cost JDM , that
is, JDM (ρ1) < JDM (ρ0). A similar approach is used in
Bazanella et al. (2008), where cost function shaping is
performed employing intermediate reference models in a
cautious control approach.

3.5 Advanced controller

An advanced control layer, based on a classic Generalized
Predictive Control (GPC) (Clarke et al., 1987) has been
chosen. The GPC allows the user to achieve high closed-
loop performance in a straightforward formulation and
also takes into account input and output constraints. The
controller provides at each instant t a set of future Nr
optimal control actions by minimizing a chosen objective
function over a future-time horizon t ∈ [t+ 1, t+Ny].

Consider a SISO system described as an ARX model

A(q)y(t) = B(q)r(t) +D(q)d(t) + e(t) (24)

where r(t) is the input signal, y(t), the output, d(t), the
disturbance, e(t), a white noise signal, A(q),B(q) andD(q)
are polynomials in q−1.

The corresponding j-step ahead optimal predictor can
be derived in a similar fashion as done in Camacho and
Bordons (2007) for a CARIMA model, and is expressed as

ŷ(t+ j|t) = Sj(q)∆r(t+ j − 1) + f(t+ j) (25)

where ŷ(t + j|t) represents the j-step ahead prediction
of y(t) considering data up until instant t, Sj(q) is a
polynomial in q whose coefficients are the process’ step
response coefficients relative to input r(t). Here, it was
considered that the future disturbance signal is unknown
(i.e. ∆d(t+ j) = 0, ∀ j > 0). In addition, the free response
f(t+ j) can be obtained recursively as

f(t+j+1) = q(1−A(q))f(t+j)+B(q)r(t+j)+D(q)d(t+j)
(26)

with r(t + k) = r(t − 1) and d(t + k) = d(t)∀k ≥ 0
and f(t) = y(t). The vector of Nr future control signal
variations is obtained at each instant t as a solution of the
following constrained problem:

∆R = arg min
∆r

JPC

s.t. g(∆r) ≤ b
(27)

where JPC is a classical quadratic cost function

JPC =

Ny∑
j=1

[ŷ(t+j|t)−w(t+j)]2+

Nr∑
j=1

λ[∆r(t+j−1)]2 (28)

for reference tracking and penalizing control effort, in
which λ is a weighting factor. Only the first element of ∆R
is applied to the process, and the procedure is repeated at
the next instant.

4. SIMULATION RESULTS

To illustrate the control approach presented in this paper,
a SISO model identified from a pilot plant (Fig. 2) is
considered. Tank 1 level should be controlled to achieve a
desired liquid level through the manipulation of the valve’s
opening. Also, the valve’s opening is susceptible to load
disturbances. The system has therefore one input u(t), the
valve’s opening (given in %), one output y(t), the Tank 1
level (cm), and a disturbance signal d(t) (%).

Fig. 2. Schematic diagram of the system.

The model was obtained through a grey-box identification
method and resulted in the second order discrete-time
model

G(q) =
3.9725× 10−5

(q − 0.9943)(q − 0.9926)
(29)
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with sampling time Ts = 1 s. Note that (29) is a linear
model which represents the system’s behavior around a
given operation point, here chosen as yop = 30 cm and
uop = 85 %.

To design the controller, two operational constraints are
considered: the valve’s opening has a range of [0− 100] %
and the valve’s opening variation should not surpass 5 %
per second. The latter is necessary since the real actuator
cannot respond ideally to aggressive control signals.

The system is considered to be operating in a closed-loop
with the following PID controller

C(q, ρ0) =
43.147(q − 0.9692)(q − 0.9961)

q(q − 1)
(30)

obtained through the VRFT method with reference model
chosen as Td(q) = 0.0001

(q−0.99)(q−0.99) for set point tracking.

In order to increase disturbance rejection performance, the
flexible VDFT approach is used to tune the inner PID
controller, using as desired disturbance model

Qd(q, η) = [ η1 η2 ]

[
q
1

]
F (q) (31)

with

F (q) =
(q − 1)

(q − 0.99)3q
(32)

The reference model in (31) and (32) is chosen so that
Γ[Qd(q, η)] = Γ[G(q)] = 2. It is supposed here that the
relative degree of the process can be easily obtained from
its time response and that such information is available.

Closed-loop data, using C(q, ρ0), was collected applying
a pulse of amplitude 1 % and duration of 1300 s to the
disturbance signal d(t) at instant 200 s. Using the flexible
VDFT method, with 500 iterations, a first pair of vectors
(ρ̂1, η̂1) was tuned, which resulted in a JDM (ρ̂1) = 0.0028
(calculated with d(t) an 1300 s-long unitary step signal).
To improve this value, a second closed-loop experiment,
using C(q, ρ̂1), was performed, whose input/output data
can be seen in Fig. 3.
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Fig. 3. Closed-loop input and output data to a step
disturbance signal.

The flexible VDFT was once more solved, and the refer-
ence model obtained for this second round is

Qd(q, η̂2) =
7.2979× 10−5(q − 1)(q − 0.4618)

q(q − 0.99)3
(33)

and the following controller has been tuned:

C(q, ρ̂2) =
433.89(q2 − 1.985q + 0.9849)

q(q − 1)
(34)

which results in a closed-loop disturbance responseQ(q, ρ̂2)
very similar to the desired one Qd(q, η̂2), with JDM (ρ̂2) =
1.4959× 10−5, calculated with data from Fig. 4.

Time (s)

0 200 400 600 800 1000 1200

T
a

n
k
 1

 l
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v
e

l 
(c

m
)

30
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30.1

30.15
Desired disturbance response

Obtained disturbance response

Fig. 4. Comparison between Qd(q, η̂2) and Q(q, ρ̂2).

In the next step of the control design, the constrained GPC
problem is specified in the following manner:

∆R = arg min
∆r

JPC (35)

s.t.

−5 ≤ C(q, ρ̂2)(r(t)− y(t)) + d(t)− u(t− 1) ≤ 5 (36)

0 ≤ C(q, ρ̂2)(r(t)− y(t)) + d(t) ≤ 100 (37)
where the constraint in (36) takes into account the real
actuator’s rate ∆u(t) limitation and (37) considers the
valid range of the input signal u(t). Also, the prediction
and control horizons were chosen as Ny = Nr = 10 and
the control effort weight was taken as λ = 1. Moreover,
Qd(q, η̂2) and T̂d(q) , C(q, ρ̂2)Qd(q, η̂2) were used as
model for the inner-loop behavior.

The closed-loop results of the hierarchical control structure
can be seen in Fig. 5. For comparison, Fig. 5 also shows the
closed-loop behavior for the VRFT controller C(q, ρ0) and
also the flexible VDFT controller C(q, ρ̂2). The simulation
has reproduced the saturation effects on the control signal
and its variation.
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Fig. 5. Comparison of the closed-loop responses obtained
with different controller design approaches.

Considering a cost function defined as

J ,
N∑
t=1

[w(t)− y(t)]2 (38)
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the VRFT tuned PID results in J = 181.4826, the VDFT
tuned PID, in J = 84.2106 and the hierarchical control
structure with inner loop using VDFT, J = 25.8531,
calculated with data shown in Fig. 5.

As expected, the joint structure with data-based tuned
PID and GPC results in an altogether better performance:
in disturbance rejection, but also in reference tracking. The
success of the control structure depends mostly on whether
the PID tuning achieves the desired closed-loop response.
The choice of letting part of the reference model free to
be identified plays a major role in that success, allowing
the GPC layer to correctly predict and actuate over the
process.

For comparison, assume now that the inner PID loop
is tuned with the classical VDFT method, for a fixed
reference model of

Qd(q) =
1× 10−4(q − 1)

(q − 0.99)3
. (39)

The resulting PID controller is

C(q, ρ̂3) =
−27.582(q − 1.089)(q − 0.9959)

q(q − 1)
(40)

and Fig. 6 shows the obtained closed-loop response
Q(q, ρ̂3) compared to the chosen Qd(q), resulting in
JDM (ρ̂3) = 0.8450, which is considerably larger than the
JDM (ρ̂2) index achieved with the flexible formulation.
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Fig. 6. Comparison between Qd(q, η̂3) and Q(q, ρ̂3).

The models Qd(q) and T̂d(q) = C(q, ρ̂3)Qd(q) fail to
represent the real closed-loop. As a consequence, during
the quadratic programming solution the problem becomes
infeasible due to constraints inconsistencies and the GPC
layer thus fails to provide a well-behaved response to the
constrained control problem.

5. CONCLUSION

This paper has introduced directions in the tuning of
a restricted order controller, so the resulting closed-loop
behavior highly resembles the desired reference model for
disturbance rejection. The concepts developed are partic-
ularly interesting for use within a two-layer control struc-
ture, in which the outer loop is designed as a model-based
predictive control and is based on the chosen disturbance
reference model for the inner loop, therefore disregard-
ing any a priori knowledge on the process’ model. As a
consequence, the performance of the MPC layer depends
majorly on whether the achieved behavior matches the
desired specification in the VDFT-tuned control loop. Fu-
ture extensions to the research should include improving

the MPC layer robustness, enlarging the scope to multi-
variable systems and implementing the developed control
structure in a real-time application.
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