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Abstract: In this article, a method to tune proportional-integral-derivative controllers for the
class of plants with relative degree one is proposed, since this class includes plants that are
not amenable to application of the traditional Ziegler-Nichols (ZN)-like methods. The method
presented here is based on a modified relay feedback experiment with inclusion in the loop
of a transfer function of constant phase in a defined range of frequencies. Thus, with a single
experiment and simple tuning formulas this method enlarges the class for which the ZN-like
methods can be applied.
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1. INTRODUCTION

The PI(D) controllers are the most commonly used control
structures (Åström and Hägglund, 1995). One of the
reasons for this is the existence of the two Ziegler-Nichols
(ZN)-like tuning methods initially proposed in the seminal
work (Ziegler et al., 1942): the one based on the open-
loop step response of the plant and the one based on
a closed-loop experiment. The first method applies only
to plants with a characteristic reaction curve, and the
second method applies only to plants with a finite ultimate
frequency, i.e., whose Nyquist diagram crosses the negative
real axis. Thus, there are plants that are not amenable
to the application either of the ZN-like tuning methods
– plants that have no ultimate frequency and have no
reaction curve that allows the application of this method.

A PID tuning method based on a modified relay feedback
experiment has been proposed in Bazanella et al. (2017)
for the class of plants with relative degree greater than
one. The identification of a particular point of the plant’s
frequency response is performed in a single experiment
through the relay feedback experiment with inclusion of
a fractional-order integrator (FOI) in the loop. Then, the
controller parameters are calculated from this identified
information by simple tuning formulas, which maintains
the same simplicity and rapidity of the ZN-like methods.

In this article, similar to the tuning method presented
in Bazanella et al. (2017), it is proposed to tune PID
controllers for plants with relative degree one. The modi-
fied relay feedback experiment is changed to be applicable
to this class of plants and tuning formulas are proposed.
Thus, this development enlarges even further the class for
which the closed-loop ZN-like methods can be applied.

This article is organized as follows. In Section 2, some
preliminary concepts and a brief review are presented. The
tuning method is described in Section 3, where the PI(D)
tuning formulas are developed based on the knowledge and
positioning of a particular point of the plant’s frequency
response. The modified relay feedback experiment that
allows to identify this point is presented in Section 4.
A detailed analysis of the methodology is performed in
Section 5 with two different plants that are not amenable
to either of the traditional ZN methods. The concluding
remarks are shown in Section 6.

2. PRELIMINARIES

2.1 Plants

In this article, the class of linear time invariant causal
(LTIC) plants is considered. This class of plants is charac-
terized by

Y (s) = G(s)U(s), (1)
where G(s) is the plant’s transfer function, U(s) and Y (s)
are respectively the Laplace transforms of the input and
the plant’s output (the controlled variable). The plant is
controlled with unitary feedback by a LTIC controller, that
is

E(s) = R(s)− Y (s), U(s) = C(s)E(s), (2)
where R(s) is the reference, E(s) is the tracking error, and
C(s) is the controller’s transfer function.

2.2 PI(D) Controllers

The transfer function of a PI controller can be represented
as:

Cpi(s) = Kp

(
1 +

1

Tis

)
, (3)
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where Ti is the integral time and Kp is the proportional
gain, which are the parameters to be designed. The tuning
of a PID controller is performed considering ideal deriva-
tive action and the following transfer function:

Cpid(s) = Kp

(
1 +

1

Tis

)
(1 + Tds) . (4)

Ideal derivative action cannot be exactly implemented in
practice, so the transfer function of a implementable PID
controller usually is

Cpid(s) = Kp

(
1 +

1

Tis

)(
1 + Td

s

Ns+ 1

)
, (5)

where N is a fixed parameter determined according to a
procedure detailed in Section 3.

2.3 ZN-like methods

There is a large amount of literature dedicated to PID
tuning rules, and several methods have been proposed and
successfully applied, for example, λ-tuning, Cohen-Coon,
and MIGO – an overview is given in Åström and Hägglund
(1995). These methods and their extensions, like the one
proposed in (Pereira and Bazanella, 2015) to tune resonant
controllers, consist in variations of the methods proposed
in the seminal work Ziegler et al. (1942). A tuning method
presented in (Ziegler et al., 1942) consists in causing an
oscillation with a plant in closed-loop, measuring the oscil-
lations’ frequency and amplitude, then obtaining the con-
troller parameters by means of simple formulas dependent
on these parameters. In another seminal work, Åström
and Hägglund (1984) have improved this method with the
relay feedback experiment and the explicit consideration of
gain and phase margins. Here, it is referred as the classical
forced oscillation (CFO) method.

The CFO method is based on the knowledge of the
ultimate point of the plant’s frequency response. The
ultimate point of a given transfer function is the point
at which its Nyquist plot crosses the negative real axis –
the point corresponding to the lowest frequency where its
phase is −π. This point is characterized by the ultimate
frequency ωu and the ultimate gain Ku, which are defined
as

ωu = min
ω≥0

ω : ∠G(jω) = −π, Ku =
1

|G(jωu)| . (6)

These definitions allow to summarize the CFO method as
follows.

(1) Identify the ultimate point of the plant’s frequency
response, that is, determine ωu and Ku.

(2) Design the parameters of the controller such that
C(jωu)G(jωu) = p, or equivalently

C(jωu) = −Kup (7)

where p is a prespecified location in the complex
plane.

The first step of the CFO method is generally performed
through the relay feedback experiment, which consists
in a closed-loop experiment with the following nonlinear
control action:

u(t) = d sign(e(t)) + b, (8)

where sign(·) is the sign function [sign(x) = 1 for positive
x and sign(x) = −1 for negative x], d ∈ R+ is a parameter

to be chosen, and b ∈ R is the bias. The parameter d regu-
lates the oscillation amplitude at the plant’s output and b
must be adjusted to obtain a symmetrical oscillation. Once
a symmetric oscillation is obtained, its amplitude Au and
period Tu are measured and the ultimate characteristics
are given by (Åström and Hägglund, 1984)

Ku =
4d

πAu
and ωu =

2π

Tu
. (9)

In the second step of this method, the controller’s pa-
rameters Kp, Ti and Td are designed by solving (7) for
a defined location p. Under the assumption that the fre-
quency response of the plant is sufficiently smooth, moving
the ultimate point away from −1 + j0 in the complex
plane with the controller implies that the whole open-loop
frequency response is shifted away from it, thus leading to
appropriate stability margins. Over time, different loca-
tions p have been proposed, each one resulting in different
stability margins and transient performance. The tuning
formulas presented in Ziegler et al. (1942) correspond to
p = −0.4 + j0.08 for PI controllers and p = −0.6 − j0.28
for PID controllers.

This method can not be applied to plants that have no
ultimate point. This is the case of all the minimum-phase
open-loop stable first and second-order plants, and most
plants with relative degree smaller than three, for example.
Therefore, a PI(D) tuning method based on a modified
relay feedback experiment for a larger class of plants
was presented in Bazanella et al. (2017). The extended
forced oscillation (EFO) method was developed based on
the same theoretical approach as the CFO method, that
is to place one particularly relevant point of the open-
loop frequency response at a specified location in the
complex plane, and it can be applicable to plants with
relative degree larger than one. To identify a particular
point of the plant’s frequency response, the methodology
requires only one experiment without designer intervention
and the controllers parameters are designed trough simple
formulas, keeping the same simplicity of the CFO method.

In this paper, the EFO method is further developed to
be applicable to minimum-phase open-loop stable plants
with relative degree one. In what follows, PI(D) tuning
formulas are obtained. Then, the modified relay feedback
experiment presented in Bazanella et al. (2017) is changed
to be applicable to this class of plants.

3. EXTENDED FORCED OSCILLATION METHOD

The control design objective of the CFO method is to
obtain appropriate stability margin, that is, gain and
phase margins for the class of plants that has an ultimate
point (Åström and Hägglund, 1984). If a plant has no
ultimate point, then the gain margin will be infinite,
provided that the controller does not contribute with too
large phase lag. Thus, the phase margin becomes the only
explicit control design objective for this class of plants
(Bazanella et al., 2017). Based on the theoretical approach
of the CFO method, the EFO’s idea is to identify a specific
point of the plant’s frequency response, and then design
a controller to achieve a desired phase margin at this
particular frequency. This idea is analytically developed
as follows.
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Let Mφ be the desired phase margin and θ , Mφ − 180◦.
Identify the frequency ων defined as ∠G(jων) = ν, and the
magnitude of the plant’s frequency response at this specific
frequency Mν = |G(jων)|. If the controller is tuned such
that

C(jων)G(jων) = 1∠θ, (10)

then the phase margin will be exactly the desired one
at ων , provided that the magnitude of the loop transfer
function monotonically decreases for frequencies higher
than this identified frequency. Thus, the controller must
be tuned to satisfy

C(jων) =
1

Mν
∠(θ − ν). (11)

For those plants with relative degree larger than one and
those plants with relative degree one whose phase crosses
the −120◦ line, Bazanella et al. (2017) have proposed to
identify the point of the plant’s frequency response whose
phase is ν = −120◦. Then, the controller is designed to
guarantee Mφ = 50◦ with the PI and Mφ = 60◦ with the
PID structure.

In this paper, for those plants with relative degree one
whose phase does not cross the −120◦ line, the point of the
plant’s frequency response to be identified and the desired
phase margin have been defined after several tests. PI
and PID controllers have been designed and the resulting
performance from the closed-loop reference step response
has been evaluated for a wide array of plants 1 . Different
values of ν and Mφ, which result in different stability
margins and performance, can be chosen. The proposed
values that have emerged as the best ones in tests are:
identify the point of the plant’s frequency response whose
phase is ν = −60◦ and design the controller to guarantee
Mφ = 50◦ with the PI and Mφ = 60◦ with the PID
structure. In this case, (11) can be rewritten as

Cpi(jω60) =
1

M60
∠− 70◦, (12)

for the PI, and

Cpid(jω60) =
1

M60
∠− 60◦. (13)

for the PID controller.

In the following, the tuning formulas for PI and PID con-
trollers are obtained to satisfy (12) and (13), respectively.

3.1 PI

The PI tuning formulas are obtained by substituting (3)
with s = jω60 into the tuning equation (12), which results
in

Cpi(jω60) = Kp

(
1− j

Tiω60

)
=

1

M60
∠− 70◦. (14)

Equating real and imaginary parts of the last equation
yields the tuning formulas for a PI controller proposed in
this article

Kp =
cos(70◦)
M60

, Ti =
1

ω60 tan(70◦)
=

T60
2π tan(70◦)

, (15)

where T60 = 2π/ω60.

1 The results of these tests are not shown for lack of space.

Table 1. Tuning formulas for PI(D) controllers

Controller Kp Ti Td N

PI 0.34
M60

0.058T60 - -

PID 0.34
M60

0.058T60 0.028T60 1.6× 10−4 T60

R(s) Y (s)F (s) G(s)
+ E(s) U(s)

−

Fig. 1. Relay feedback experiment for identification of the
ultimate point of F (s)G(s).

3.2 PID

The PID tuning formulas are obtained from a PI tuned
by (15), which inserts a phase lag of 70◦ at the identified
frequency ω60. To obtain a phase margin of 60◦, the PD
block 1+Tds must have a phase lead of 10◦ at this specific
frequency, that is

∠1 + jω60Td = arctan(ω60Td) = 10◦. (16)

Then, the parameter Td is given by

Td =
tan(10◦)
ω60

=
tan(10◦)

2π
T60. (17)

Through this choice, the PD block changes the magnitude
of the controller’s transfer function at ω60 by a factor of√

1 + (Tdω60)
2

=
√

1 + tan2(10◦) =
1

cos(10◦)
. (18)

To achieve unitary magnitude of the loop transfer function
at ω60, the controller’s gain Kp given in (15) must be
corrected by the inverse of the factor (18). Thus, for the
PID, the proportional gain is

Kp =
cos(70◦) cos(10◦)

M60
. (19)

The ideal transfer function (4) is used for the controller
design, whereas in the numerical examples, the imple-
mentable transfer function (5) is used with N = 10−3/ω60.
The proposed tuning formulas for the PI and PID con-
trollers are presented in Table 1, where the trigonometric
functions have been rounded up to two significant digits.

4. IDENTIFICATION OF THE ω60-POINT

The relay feedback experiment described in Section 2.3
is a classical way to experimentally identify the ultimate
point of a plant, but other points of a plant’s frequency
response can be identified with a slight modification of
this experiment (Åström and Hägglund, 1995). When
a known transfer function, say F (s), is inserted in the
loop in addition to the relay, as in Fig. 1, if a self-
oscillation condition is obtained then it will have the
ultimate frequency of the transfer function F (s)G(s), that
is, at ω1 : ∠F (jω1)G(jω1) = −180◦. Thus, the plant’s
magnitude and phase at this frequency can be calculated
as (Bazanella et al., 2017):

|G(jω1)| =
πA

4d |F (jω1)| , ∠G(jω1) = − 180◦ − ∠F (jω1),

(20)
since F (jω1) is known.
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Table 2. Coeficients of F (s)

m = 1/3 for γ = −30◦ m = 2/3 for γ = −60◦

k ak bk ak bk
0 0 0.3452 0 0.7152
1 111.1 1309 11.11 1446
2 8.49× 104 5.4× 105 1.097× 104 4.387× 105

3 1.15× 107 4.302× 107 1.918× 106 2.678× 107

4 3.232× 108 7.22× 108 6.963× 107 3.473× 108

5 1.942× 109 2.598× 109 5.403× 108 9.672× 108

6 2.509× 109 2.013× 109 9.016× 108 5.799× 108

7 6.986× 108 3.36× 108 3.24× 108 7.487× 107

8 4.195× 107 1.211× 107 2.506× 107 2.08× 106

9 5.462× 105 9.508× 104 4.164× 105 1.238× 104

10 1569 167.8 1466 15.45
11 1 0.06905 1 0.003576

To implement the proposed development in the EFO
method, the point of the plant’s frequency response whose
phase is −60◦ must be identified. If the identification
is performed through the ultimate point of F (s)G(s),
a transfer function F (s) whose phase is −120◦ at the
frequency ω60 must be chosen, but this specific frequency
is not known in advance since it is one of the two values
that the experiment aims at identifying 2 .

As proposed in Bazanella et al. (2017), if the phase of
F (s) was the same for all frequencies, i.e. ∠F (jω) = γ ∀ω,
then only one experiment would be necessary, keeping the
same characteristics of the CFO method. A system that
has a transfer function with a flat phase frequency response
that is not an entire multiple of −90◦ is an FOI and it is
represented by

F (s) =
1

sm
, (21)

where it can be verified that

∠F (jω) = −∠
(
j

ω

)m
= −∠

(
e
jπ
2

ω

)m
= −π

2
m. (22)

Defining m = −γ/90◦ in (22) yields ∠F (jω) = γ ∀ω and,
for example, choosing γ = −30◦ results in m = 1/3 and
for γ = −60◦ is obtained m = 2/3.

In general, fractional-order systems are approximately
implemented by integer order systems. To obtain transfer
functions that approximate the magnitude and phase
characteristics of a desired FOI, the MATLAB package
FOMCON (Tepljakov et al., 2011), (Tepljakov, 2013) was
used. The transfer function shown in (23) with the two
sets of parameters presented in Table 2 describes two FOIs
approximations with magnitude characteristics of −m×20
dB/decade and constant phase value of −m × 90◦ for
m = 1/3 and 2/3, considering the range of frequencies
from 10−3 to 103 rad/s.

F (s) =

∑11
k=0 bks

k∑11
k=0 aks

k
(23)

Fig. 2 presents the Bode diagrams of these two FOIs
approximations with magnitude and phase curves having:
−6.66 dB/decade and −30◦; −13.33 dB/decade and −60◦.
Furthermore, as desired, a transfer function with constant

2 For the class of plants with relative degree larger than one the point
of the plant’s frequency response whose phase is −120◦ is identified
with a transfer function F (s) whose phase is −60◦ at the frequency
ω120.
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Fig. 2. Frequency response of the FOI approximations.
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Fig. 3. Frequency response of G1(s) and G1(s)F (s) with
γ = −120◦.

phase of −120◦ can be obtained from the FOI approx-
imation with phase of −30◦ and an integrator, that is,
F ′(s) = F (s)/s.

To properly identify the desired point of the plant’s
frequency response, the transfer function F (s) given in
(23) must have phase γ in the self-oscillation frequency
obtained in the relay experiment with the approximated
FOI in the loop. Therefore, F (s) must have the largest
possible range of frequencies.

5. CASE STUDIES

In order to validate the proposed tuning method, two
different plants will be taken into account. For each of
them, a detailed description of all steps of the controller
design will be presented.

5.1 Plant 1

The first plant has the following transfer function:

G1(s) =
17s3 + 1840s2 + 5.2× 104s+ 4.5× 105

s4 + 80s3 + 3850s2 + 9×104s+ 4.5×105
. (24)

The frequency response of the plant described by the
transfer function (24) is presented in Fig. 3. Initially, the
classical ZN methods are applied in order to tune the
PI(D) controller’s parameters. The output of the open-
loop step response procedure is shown in Fig. 4(a), where
it is seen that the reaction curve is not a well-defined S-
curve, thus tuning based on this experiment can not be
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Fig. 4. Output of G1(s) for the ZN experiments.
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Fig. 5. Output of G1(s) for the relay feedback experiment
with a FOI of −120◦ in the loop.

Table 3. Parameters for the relay feedback
experiment with FOI of −120◦ and G1(s)

d b A |F (jω60)| M60 T60[s]

80 0 0.474 0.00642 0.724 0.139

performed. Then, the CFO method is applied through
a closed-loop relay feedback experiment whose plant’s
output is shown in Fig. 4(b) considering as reference input
a step with amplitude one. The CFO method also can
not be applied, since the plant has no ultimate point and,
consequently, a self-oscillation condition is not obtained.

Thus, the EFO method is used because it is not possible
to obtain the PI(D) controller’s parameters through either
classical ZN tuning methods. A self-oscillatory behavior
of the system is obtained in a closed loop experiment
with a relay and a FOI of −120◦, as presented in Fig. 1.
The ultimate point of F (s)G1(s) has the same frequency
that the point of the plant’s frequency response whose
phase is −60◦, as shown in Fig. 3, and this specific
point is identified. The plant’s output considering as
reference input a step with amplitude one is presented in
Fig. 5 and the parameters obtained in this experiment are
summarized in Table 3.

The sets of the controllers’ parameters calculated from
Table 1 and the performance measures are summarized
in Table 4. The closed-loop responses to a unit step with
both PI and PID controllers are shown in Fig. 6. The
settling time (ts) is about the same for both controllers, the
maximum overshoot (Mo) is approximately 50% smaller
with the PID controller, due to the larger phase margin.

Table 4. Tuning and performance for G1(s)

PI PID

Kp Ti ts[s] Mo Kp Ti Td N ts[s] Mo

0.469 0.00805 0.31 14 0.469 0.00805 0.00388 2.22×10−5 0.29 7.1
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Fig. 6. Output of G1(s) in closed loop with the correspond-
ing PI and PID controllers.
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Fig. 7. Nyquist diagrams of G1(s), Cpi(s)G1(s), and
Cpid(s)G1(s). Dashed lines are at −120◦, −130◦ and
at unitary magnitude.

The Nyquist diagrams of the plant’s transfer function
G1(s) and of the open-loop transfer function with the
PI(D) controllers, Cpi(s)G1(s) and Cpid(s)G1(s), are pre-
sented in Fig. 7. It can be seen that these diagrams do not
encircle the point −1 + j0, and the controller’s magnitude
1/M60 and phase at the plant’s frequency ω60: −70◦ and
−60◦, for the PI and PID controllers, respectively, guar-
antees phase margin of 50◦ and 60◦.

5.2 Plant 2

The second plant considered for analysis of the tun-
ing method has an unknown transfer function. Initially,
the relay feedback experiment is performed to tune the
PI(D) controller’s parameters. In this experiment a self-
oscillation condition is not satisfied, thus this plant has no
ultimate point and the CFO method can not be applied.

Then, the relay feedback experiment with a −60◦ FOI in
the loop is performed, and once again a self-oscillation
condition is not obtained, so the phase of the plant’s
frequency response does not reach either −180◦ or −120◦.
A last relay feedback experiment is performed with a
−120◦ FOI in the loop and a self-oscillatory behavior is
achieved, as presented in Fig. 8. Hence, it is identified
the point of the plant’s frequency response whose phase
is ν = −60◦. Indeed, the transfer function of this plant is
given by
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Fig. 8. Output of G2(s) for the relay feedback experiment
with a FOI of −120◦ in the loop.

Table 5. Parameters for the relay feedback
experiment with FOI of −120◦ and G2(s)

d b A |F (jω60)| M60 T60[s]

1.6 0 0.532 0.522 0.501 3.75

Table 6. Tuning and performance for G2(s)

PI PID

Kp Ti ts[s] Mo Kp Ti Td N ts[s] Mo

0.679 0.218 4.5 20 0.679 0.218 0.105 6× 10−4 3.1 14
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Fig. 9. Output of G2(s) in closed loop with the correspond-
ing PI and PID controllers.

G2(s) =
1

s+ 1
and the desired point of the plant’s frequency response is
identified. The parameters obtained in this experiment are
summarized in Table 3.

The sets of the controllers’ parameters and the perfor-
mance measures are shown in Table 6. In Fig. 9 the
plant’s output signals to a unit step with both the PI
and PID controllers in closed loop are presented. In this
case, the settling time and the maximum overshoot are
approximately 30% smaller with the PID controller.

The Nyquist diagram of G2(s) and of the open-loop trans-
fer function with the PI(D) controllers, Cpi(s)G2(s) and
Cpid(s)G2(s), are shown in Fig. 10. For both controllers
the diagrams of the control loop do not encircle the point
−1 + j0 since of the frequency response is smooth enough
around the negative real axis and the phase margin of 50◦

and 60◦, for the PI and PID, respectively, is guaranteed.

6. CONCLUSION

In this paper, a development in the EFO method has been
proposed to tune PID controllers for plants with relative
degree one, which are not amenable to the application of
the CFO method. Like the EFO method, its development
is based on the identification of a particular point of
the plant’s frequency response through the relay feedback
experiment with the inclusion of a FOI in the loop. PID
tuning formulas were obtained considering a wide array
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Fig. 10. Nyquist diagrams of G2(s), Cpi(s)G2(s), and
Cpid(s)G2(s). Dashed lines are at −120◦, −130◦ and
at unitary magnitude.

of plants, then a detailed description of the controller
design was presented in two case studies. The obtained
closed-loop performance is similar to the performance
that is achieved with the ZN-like methods. The proposed
development enlarges the class of plants for which the
EFO method can be applicable, thus making it possible
the tuning of PID controllers for a larger class of plants
that do not admit the application of either classical ZN-like
methods. A possible extension of this work is to develop a
single methodology to tune PID controllers for both plants
that have and plants that have no ultimate point.
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Åström, K.J. and Hägglund, T. (1995). PID controllers:
theory, design, and tuning. ISA, Research Triangle Park,
NC, USA.

Bazanella, A.S., Pereira, L.F.A., and Parraga, A. (2017).
A new method for PID tuning including plants without
ultimate frequency. IEEE Transactions on Control
Systems Technology, 25(2), 637–644.

Pereira, L.F.A. and Bazanella, A.S. (2015). Tuning rules
for proportional resonant controllers. IEEE Transac-
tions on Control Systems Technology, 23(5), 2010–2017.

Tepljakov, A. (2013). FOMCON: Fractional-Order Model-
ing and Control. URL http://fomcon.net/. Accessed
on Oct. 2017.

Tepljakov, A., Petlenkov, E., and Belikov, J. (2011). FOM-
CON: a MATLAB toolbox for fractional-order system
identification and control. International Journal of Mi-
croelectronics and Computer Science, 2(2), 51–62.

Ziegler, J.G., Nichols, N.B., and Rochester, N.Y. (1942).
Optimum settings for automatic controllers. Transac-
tions of the ASME, 64(11), 759–768.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

136


