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Abstract: In this paper, we propose an optimization-based tuning methodology for real and
complex Fractional-Order Proportional-Integral (FOPI) controllers. The proposed approach
hinges on a modified version of the Integral Absolute Error (IAE) sensitivity-constrained
optimization problem, which is suitably adapted to the design of fractional controllers. As such,
it allows the exploitation of the potentiality of the (possibly complex) fractional integrator.
We also propose a method, based on the well-known CRONE approximation, which delivers
a band-limited real-rational approximation of the real part of the complex-order integrator.
Finally, based on a First-Order-Plus-Dead-Time (FOPDT) model of the process, we use our
design and approximation techniques to find an optimal tuning for real, complex fractional-
order, and integer PI controllers and we provide a quantitative performance assessment.
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1. INTRODUCTION

The Proportional-Integral-Derivative (PID) control algo-
rithm is ubiquitous in industry because of its capability
to provide an excellent cost/benefit ratio and because of
the clear physical interpretation of its parameters (Vi-
sioli, 2006; Arrieta and Vilanova, 2007; Vilanova et al.,
2012). The PID algorithm is based on two fundamental
operations: integration and differentiation. In a classical
framework, these operations can only be repeated a finite
(integer) number of times. While this renders the clas-
sical differential operators rather intuitive, it constrains
the derivative and integral orders to be integer, often
resulting in an underexploitation of the potentiality of the
controller. Real fractional calculus hinges on the removal
of this limitation, thus allowing the differential order to
assume any real value (Podlubny, 1999a; Padula et al.,
2013; Padula and Visioli, 2014). The Fractional-Order PID
(FOPID) controller is obtained by exploiting fractional
calculus to generalize the derivative and integral parts of
the classical PID controller (Podlubny, 1999b). FOPID
controllers have attracted a great deal of attention in
recent years because they provide better performance and
improved robustness (Padula and Visioli, 2015; Vinagre
et al., 2007; Caponetto et al., 2013; Muresan et al., 2016;
Tepljakov et al., 2014; Tejado et al., 2014; Beschi et al.,
2016). The main challenge in the tuning of a fractional
PID controller lies in the large number of parameters to be
tuned (five against the three of a classical PID controller,
the two additional ones being the differential orders). To
address this problem, different methods for the design of
a FOPID controller have been proposed in the literature,
where different objective functions have been taken into
account, see e.g. (Monje et al., 2008, 2004; Padula and

Visioli, 2012) and various tuning rules have been suggested
(Li et al., 2010; Valério and Sá da Costa, 2010; Padula and
Visioli, 2011).

The positive results of FOPID controllers obtained in
the aforementioned references suggest that a worthwhile
research direction may involve the generalization of their
structure along different directions. In this context, a nat-
ural generalization of the FOPID controller appears to
be the Complex FOPID controller (CFOPID) obtained
by allowing the derivative and integral actions to assume
any complex value (Valério and Sá da Costa, 2013). The
complex-order differentiation has been firstly exploited for
control purposes in the so-called third generation CRONE
controller (Lanusse et al., 2015). In (Tenreiro Machado,
2013), new controller architectures using the complex-
order derivatives concept are proposed, and in (Shahiri
et al., 2015, 2016) a Complex Fractional-Order Propor-
tional Integral (CFOPI) controller design methodology is
proposed. However, in contrast with the wealth of litera-
ture in the area of FOPID control, CFOPID controllers
are still largely uncharted territory (Shah and Agashe,
2016). In particular, a systematic quantitative evaluation
of the improvement of the performance/robustness that
can be achieved by using a CFOPID controller is missing,
and this prevents the user from being able to evaluate the
advantages/disadvantages of CFOPID controllers against
their increased complexity. The reason for the lack of re-
sults in complex-order fractional control and, more specif-
ically, in CFOPID control, is that dealing with complex
fractional operators is considerably more challenging than
dealing with their real counterparts. Indeed, when using
a complex-order integrator, the controller itself results
in a complex differential equation. For control purposes,
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however, we are interested in designing a controller that
produces a real-valued signal. Taking the real part of
the output of the controller may, however, result in an
undesired frequency behavior. Moreover, because of their
non-local nature, fractional operators require to be approx-
imated. To this end, the well-known Oustaloup method,
hereafter referred to as CRONE approximation, can be
conveniently used also in the complex case (Oustaloup
et al., 2000). This, however, results in a complex-rational
transfer function, i.e., in a classical complex linear differen-
tial equation, from which we need to extract a real signal.

In this paper, we restrict our attention to CFOPI con-
trollers, and we provide a quantitative assessment of the
performance achievable with CFOPI, FOPI and PI con-
trollers. Firstly, we present some preliminary results for a
generalization of the CRONE approximation that results
in a real-rational transfer function which approximates
the real part of the fractional complex-order integrator.
Secondly, we define an optimization problem based on a
modified version of the sensitivity-constrained IAE mini-
mization problem, which is suitable for (possibly complex)
fractional integrators. Indeed, when considering the IAE
minimization as the objective, the obtained optimal inte-
grator is always of integer order (Padula and Visioli, 2011,
2012, 2015; Sánchez et al., 2017) for first-order processes.
To overcome this limitation, we introduce a dead-band
around the steady-state which allows the exploitation of
the potentiality of the (complex) fractional integrator. We
find an optimal tuning for CFOPI, FOPI and PI regulators
by numerically solving the modified optimization prob-
lem for FOPDT processes with different normalized dead
times. We also consider different control tasks, different
levels of sensitivity and different dead-bands. Finally, we
compare the performance achieved with the three regula-
tors in all the cases mentioned above. The obtained results
show that the use of a CFOPI is a viable solution in
practice and that, in particular when robustness is of main
concern, it can deliver much better performance while
maintaining the same level of robustness.

The paper is organized as follows. Complex fractional-
order PI controllers are described in Section 2. The approx-
imation of <(sν) is obtained in Section 3. In Section 4, the
optimization problem is formulated, and the performance
assessment is provided in Section 5, along with a detailed
discussion. Simulation results are then shown in Section 6.
Finally, conclusions are drawn in Section 7.

2. CFOPI CONTROLLER

In this section, we briefly present, for the reader’s conve-
nience, the structure of the CFOPI. It is well-known that
the FOPI controller has the following transfer function
(Padula and Visioli, 2015)

C(s) = Kp

(
1 +

1

Tisν

)
, ν ∈ R, (1)

where Kp is the proportional gain, Ti is the integral time
constant and ν is the fractional integral order. Note that
the FOPI controller represents a genuine generalization
of the PI controller which can be obtained as a special
case of the former by setting ν = 1. The main advan-
tage of the FOPI controller with respect to the standard

PI is the possibility of continuously regulating the low-
frequency phase delay introduced by the integrator. As a
consequence, however, the slope of the magnitude of the
Bode plot changes accordingly.
A further generalization can be obtained by allowing the
integral order ν to span over the complex set C. In-
deed, this operation enables, in principle, to regulate both
the magnitude slope and the phase slope independently,
(Valério and Sá da Costa, 2013). This, however, results in
a controller whose dynamics is represented by a complex
fractional differential equation. This is clearly unsuitable
for control purposes where the controller input, i.e., the
control error, is a real (physical) signal and the controller
output, i.e., the control variable, must be a real signal. To
overcome this limitation, along the lines of (Shahiri et al.,
2015, 2016), we consider the following controller

C(s) = <
(
Kp

(
1 +

1

Tisν
))

= Kp

(
1 +

1

Ti<(sν)

)
, ν ∈ C,

(2)
where ν = λ+ iµ and

<(sν) =<(sλ cos(µ log s) + isλ sin(µ log s))

=

{
sλ cos(µ log s), if µ ≤ 0
sλ sec(µ log s), if µ > 0.

(3)

Note that when µ = 0 we re-obtain a FOPI; furthermore,
when also λ = 1, a PI controller is obtained.

A complete discussion on the frequency behavior of <(sν)
compared to the one of sν is out of the scope of this paper;
the reader may refer to (Valério and Sá da Costa, 2013)
for a comprehensive discussion. We stress, however, that
<(sν) provides a good approximation of sν and we can still
independently regulate phase and magnitude slopes of the
Bode diagram through the parameters λ and µ.

3. APPROXIMATION OF <(Sν)

In order to implement the CFOPI controller (2), we need
the controller algorithm to require a computational effort
that remains constant over time. A viable solution is the
approximation of the controller transfer function in the
frequency domain with a system of finite order. To this
end, the frequency behavior of sν can be approximated
in a given frequency range [ωl, ωh] by using the CRONE
continuous approximation (Oustaloup et al., 2000), which
consists of the following recursive distribution of zeros and
poles:

sν ≈ S(s)ν = k

N∏
n=1

1 + s
ωz,n

1 + s
ωp,n

, (4)

where ωz,n and ωp,n are, respectively, the frequencies of
the zeros and the poles, and the gain k is adjusted so
that the right side of (4) has unity gain at the gain
crossover frequency of sν . When ν ∈ C \ R, however,
the CRONE approximation provides a complex-rational
transfer function, i.e., a transfer function which is the
ratio of polynomials with complex coefficients. Since we
need a controller that produces a real signal, we need to
extract the real part from the CRONE approximation.
Given ν = λ+ iµ, consider the transfer function

N(s)

D(s)
=

{
S(s)ν , if µ < 0
S(s)−ν , if µ > 0

(5)
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and the polynomial D(s), whose coefficients are the
complex-conjugate of the coefficients of D(s). Now build
two polynomials H(s) = D(s) ∗ D(s) and L(s) = N(s) ∗
D(s), where the symbol ∗ denotes the convolution opera-
tor. The polynomial H(s) has, by construction, real coeffi-
cients. Finally, we obtain a real-rational approximation of
the real part of sν as

<(sν) ≈ S(s)Rν =


<
(
L(s)
)

H(s) , if µ < 0

H(s)

<
(
L(s)
) , if µ > 0,

(6)

where <
(
L(s)

)
is the polynomial obtained by taking the

real part of the coefficients of L(s). Given a CRONE
approximation S(s)ν of order N , the proposed approach
delivers a real-rational approximation of order 2N of the
real-part <(sν). It is worth stressing that the obtained
approximation might be nonminimum-phase, unstable or
both. Indeed, the reason for choosing a complex-order
fractional operator is that we can regulate phase and
magnitude slopes independently. However, it is well-known
that (using the Bode formula) it is possible to entirely
reconstruct the magnitude of a system from the phase,
and vice-versa, if and only if the system is stable and
minimum phase. Nevertheless, considering that we want
to approximate the fractional complex-order behavior in a
finite frequency range [ωl, ωh] and that the Bode formula
is integral in nature, the approximation of <(sν) can still
be stable and minimum phase, mainly depending on the
width of the frequency range and on the imaginary part
µ of the fractional order. A full characterization of the
relationship between all the parameters involved in the
approximation and the stability/minimum-phase property
of the approximation is currently under investigation.
However, we can say that in general the approximation
becomes unstable and minimum-phase when µ >> 0, and
stable and nonminimum-phase when µ << 0.

It is worth stressing that, when µ < 0, it is possible to
simply use the CRONE approximation S(s)ν and then
take the real part of the output signal. This, however,
does not prevent the systems from becoming nonminimum
phase. Indeed, the reader may easily check via numerical
simulation that the transfer function of this approximation
(which is well-defined because “taking the real part” is a
linear operation) is the same of S(s)Rν . On the contrary,
when µ > 0 this simple approach does not produce any
good approximation of <(sν) in general. This is intuitive
considering that S(s)ν is always stable and minimum-
phase, and taking the real part of the output signal cannot
destabilize the approximation, which should however be
unstable when µ >> 0.

4. PROBLEM FORMULATION

Consider the unity-feedback control scheme of Figure 1.
The process is assumed to have a FOPDT dynamics of
the form

P (s) =
K

Ts+ 1
e−Ls, (7)

where K is the gain, T is the time constant and L is
the dead time. The process dynamics can be characterized
by means of the so-called normalized dead time, which is
defined as

r +

−

e
C(s)

+ +

d

P (s)
y

Fig. 1. The considered control scheme.

τ =
L

L+ T
, (8)

and provides a measure of the difficulty of controlling the
process. In this paper, we consider normalized dead times
in the range 0.05 ≤ τ ≤ 0.85. Note that when τ < 0.05
the control problem becomes trivial, and when τ > 0.85,
other control paradigms, such as the Smith predictor, are
more appropriate.

For the purpose of tuning the controller, a widespread
approach in process control is to find the set of parameters
that minimizes a given functional. Among the possible
optimization functions, the IAE is often chosen, despite
the difficulties that a non-convex optimization problem
involves, because it yields, in general, a low overshoot and
a low settling time at the same time. When considering
IAE minimization as the objective, however, the obtained
optimal integrator is always of integer order, as pointed
out in (Padula and Visioli, 2011, 2012, 2015; Sánchez et al.,
2017). This phenomenon is related to the asymptotic rate
of convergence of the closed-loop systems with a fractional
integrator and prevents the use of IAE as an objective
function in the tuning of (C)FOPI controllers. In general,
the integer order integrator is mainly used to eliminate the
steady-state error. However, regarding the speed and the
quality of the transient response, limiting the controller
to a PI one may have a negative impact. To overcome
this limitation, we propose in this paper the following
optimization function

IAEδ :=

∫ t?

0

|e(t)|dt =

∫ t?

0

|r(t)− y(t)|dt, (9)

where δ ∈ R+ and t? := mint∈(0, +∞) such that for all
t > t? we have |e(t)| < δ. Roughly speaking, we optimize
the controller disregarding the shape of the response when
the transient response is already very close the desired
value. This is sensible in most practical applications, and
in particular in process control. In any case, since the
minimization of IAEδ obviously implies stability, any
fractional integrator guarantees limt→∞ e(t) = 0. Finally,
to explicitly consider the robustness issue of the closed-
loop system, we optimize (9) subject to the following
inequality constraint on the maximum sensitivity

Ms = max
ω∈[0,+∞)

1

1 + C(s)P (s)
≤Ms. (10)

In this paper, we consider two significant cases, namely
Ms = 1.4 and Ms = 2.0, as they represent the extrema
of the range of suitable values, the former referring to a
case where the robustness issue is of primary concern,
the latter to a case where the aggressiveness is more
important. Finally, we consider two different control tasks:
the unit step disturbance rejection and the unit step set-
point tracking. For each task, we minimize IAEδ, with
δ = 0.02 and δ = 0.1. The first case refers to a control
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Fig. 2. IAE0 .02 decrement achieved by using the CFOPI
with respect to integer-order PI controller (solid line)
or with respect to FOPI controller (dashed line).

problem where a tight control close to the steady-state
value is required, while in the second case the first part of
the transient response is more important.

5. PERFORMANCE ASSESSMENT

To evaluate the performance that can be achieved by using
a CFOPI controller, the set-point tracking and the load
disturbance rejection tasks have been examined individu-
ally, and different normalized processes with several values
of the normalized dead time have been considered. For
any of them, the values of the parameters of the CFOPI
controller have been obtained by solving the constrained
optimization problem presented in Section 4 via genetic
algorithm, which is known to produce a global optimum
of a problem in a stochastic framework. Further, four
sub-cases have been considered, namely Ms = 1.4 and
Ms = 2, and δ = 2% and δ = 10%. The (possibly complex)
fractional integrator has been approximated by using the
results proposed in Section 3 with N = 8, ωl ≈ 0.001ωc,
and ωh ≈ 1000ωc, where ωc is the gain crossover frequency.

It is essential to quantitatively assess the performance
that can be obtained using the fractional complex-order
controller. However, assessing the performance in terms
of IAEδ values is difficult and unnatural for the user. It
is more meaningful to evaluate the performance in terms
of the percentage improvement that can be achieved with
respect to the integer- and real-order controllers. To this
end, the same optimization procedure has been applied
to PI and FOPI controllers. The results are shown in
Figures 2 and 3, for δ = 0.02 and δ = 0.1, respectively,
and where SP stands for set-point and LD stands for load
disturbance.

As expected, we observe that an optimally tuned CFOPI
controller always leads to an improvement of the per-
formance. It is interesting to note how the performance
improvement increases with the normalized dead time
when the set-point tracking task is considered. On the
contrary, when the load disturbance rejection is of concern,
the optimal performance improvement exhibits a variety
of behaviors and each different case requires and ad hoc
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Fig. 3. IAE0 .1 decrement achieved by using the CFOPI
with respect to integer-order PI controller (solid line)
or with respect to FOPI controller (dashed line).

evaluation. Note, however, that the trend of the IAEδ

reduction in each case remains the same, independently of
the controller considered. Another interesting point is that
the performance improvement is greater when the maxi-
mum sensitivity is bounded below 1.4. This is a major ad-
vantage of the CFOPI controllers over the FOPI and the PI
ones: they considerably improve the control performance
when the robustness is the main concern. Indeed, when
constraining Ms ≤ 1.4, the optimally tuned controllers
result in a closed-loop sensitivity which is Ms ≈ 1.4, as
shown in Figure 4, where the set-point tracking case with
δ = 0.02 is presented (the other cases are similar, and they
are omitted for the sake of brevity). Consequently, the level
of robustness is fixed and a fair comparison between the
controllers is obtained. Vice-versa, constraining the maxi-
mum sensitivity to be smaller than or equal to 2.0 normally
results inMs << 2.0 (Sánchez et al., 2017). In other words,
contrarily to what is commonly understood, reducing the
robustness beyond a certain threshold does not provide
any improvement in the performance. This, however, re-
sults in optimal CFOPI, FOPI and PI controllers that,
for the same process, exhibit different levels of robustness
(see Figure 4). Therefore, the optimizer can adjust the
robustness to improve the performance, as long as the for-
mer remains below 2.0, and this reduces the gap between
the IAEδ achieved with PI, FOPI and CFOPI controllers,
when M(s) = 2.0. Finally, note that the performance is
always higher when the threshold δ = 0.1 is considered.
This is in line with the results in (Padula and Visioli,
2011, 2012; Sánchez et al., 2017), where it is shown that
the use of a fractional integrator is not beneficial for the
minimization of IAE without a threshold, i.e., when δ = 0.
In other words, if we include the steady-state performance
in the optimization function, there is no advantage in using
a (possibly complex) fractional integrator. Conversely, the
more we focus on the transient performance (i.e., the
greater the threshold δ) the higher is the benefit of using
a (possibly complex) fractional integrator.

In Figure 5 the optimal values of the parameters of the
controller with respect to different normalized dead times
τ are reported for the set-point tracking task with Ms =
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Fig. 5. Optimal parameters for the load disturbance rejec-
tion task with Ms = 2.0 and δ = 0.02%. Solid line: PI
controller. Dashed line: FOPI controller. Dotted line:
CFOPI controller.

2.0 and δ = 0.02. Note that similar results are obtained
in all other cases. The parameters Kp and Ti exhibit the
same trend for all the considered controllers, even though
the use of a complex-order integrator allows to noticeably
increase the integral time constant. The interesting point,
however, is the integrator order. When a real fractional-
order integrator is considered, the real part (which is also
the order of the integrator since, in this case, ν = λ)
shows a decreasing behavior. On the contrary, with the
complex-order integrator, the real part λ increases with the
normalized dead time, while the complex part µ remains
virtually constant. The reason of this phenomenon is that
the optimizer converges to the highest possible µ which
guarantees that the obtained approximated controller is
both stable and minimum-phase. A complete analysis of
this behavior would require a full characterization of the
adopted approximation method, and will the subject of
future investigations. Nevertheless, we note here that this
behavior depends on the approximation bandwidth, while
it is mostly insensible to the number of poles and zeros of
the approximation.

6. SIMULATION RESULTS

The aim of this section is to verify the effectiveness of the
achieved results. We consider the following process with
K = 1, T = 1 and L = 1.5:
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Fig. 6. Simulation results for process P1(s) with δ =
0.1%. Top-left: set-point step response with Ms =
1.4. Top-right: set-point step response with Ms =
2.0. Bottom-left: load disturbance step response with
Ms = 1.4. Top-left: load disturbance step response
with Ms = 2.0. Solid line: PI controller. Dashed line:
FOPI controller. Dotted line: CFOPI controller.

P1(s) =
1

s+ 1
e−1.5s, τ = 0.6. (11)

In Table 1, the IAEδ values are reported for all the
possible cases for the process P1(s). The simulation results
of the set-point and load disturbance step responses for
process P1(s) with the integer-, the real- and the complex-
order PI controller, subject to Ms = 1.4 and Ms = 2.0 are
shown in Figure 6. For the sake of brevity, we only show
the case δ = 0.1.

Tuning IAEsp IAEld IAEsp IAEld

δ = 0.02 δ = 0.02 δ = 0.1 δ = 0.1

SP 1.4 I 3.95 3.95 3.76 3.76

SP 1.4 F 3.73 3.72 3.32 3.28

SP 1.4 CF 3.54 3.52 3.23 3.19

SP 2.0 I 2.70 2.54 2.38 2.26

SP 2.0 F 2.61 2.49 2.29 2.14

SP 2.0 CF 2.54 2.47 2.27 2.12

LD 1.4 I 3.95 3.95 3.76 3.76

LD 1.4 F 3.81 3.69 3.79 3.26

LD 1.4 CF 3.60 3.50 3.68 3.18

LD 2.0 I 2.74 2.42 2.39 2.25

LD 2.0 F 2.68 2.29 3.02 2.11

LD 2.0 CF 2.61 2.20 2.96 2.08

Table 1. Results achieved with the different
tuning rules for P1(s).

The results confirm that the proposed approach is effective
and the value of IAEδ obtained with a CFOPI controller
is always lower than the one obtained with the other
controllers, for both the load disturbance rejection task
and the set-point tracking task. Figure 6 also shows that
the responses maintain an acceptable shape in all the
considered cases and that the control variable remains
always within an acceptable range. Interestingly, the use of
a (complex) fractional controller generally speeds-up the
process response when the process output is far from the
steady-state, and in particular when Ms = 1.4. Also note
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that the responses of real- and complex-order fractional
controllers appear very similar, in particular when Ms =
2.0. However, an integral-type performance index such as
IAE is capable to capture the differences.

7. CONCLUSIONS

In this paper, an optimization-based tuning methodology
for real- and complex-order fractional PI controllers has
been proposed by considering a modified version of the in-
tegral absolute error sensitivity-constrained optimization
problem, which is suitably adapted to the design of frac-
tional controllers. A method to approximate the complex-
order fractional operator with a real-rational transfer func-
tion has also been proposed. The performance improve-
ment achievable by using the CFOPI controller has been
quantitatively assessed against the performance obtainable
with FOPI and PI controllers. Simulation results validate
the effectiveness of the devised tuning method.
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Valério, D. and Sá da Costa, J. (2010). A review of tuning
methods for fractional PIDs. In Preprints IFAC Work-
shop on Fractional Differentiation and its Applications.
Badajoz (E).
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