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Abstract: In this paper we propose a PID-based control scheme for the automatic regulation
of the neuromuscular blockade level during surgery. In particular, we introduce an optimized
tuning of the PID controller parameters based on a standard set of patient models presented
in literature. The tuning procedure is based on the solution of a min-max multiobjective
optimization problem that takes into account the control performance, the control effort and
the robustness. A genetic algorithm is used to solve the optimization problem and to find the
optimal tuning. Then, in order to evaluate the control systems robustness, the optimal PID
controller is tested in simulation on a database of patient models estimated from real data. The
obtained results demonstrate that the performance achieved by considering an optimized PID
tuning satisfies the clinical specifications and is robust to the inter-patient variability.

Keywords: General anesthesia, neuromuscular blockade, PID controller, optimized tuning,
robustness, genetic algorithms.

1. INTRODUCTION

Feedback control in drugs dosing in clinical pharmacology
has received in the last decade an increasing attention. In
general, the automatic controller exploits measurements
of different vital signals of the patient to determine drugs
infusion profiles that satisfy clinical specification. One of
the most interesting application of this kind of systems
is the automatic administration of anesthetics in total
intravenous anesthesia (TIVA). General anesthesia pro-
vides the consciousness suppression (hypnosis), the pain
inhibition (analgesia), and the muscle contraction inhibi-
tion (or relaxation) by means of specific drugs. Exam-
ples of automatic control systems for the regulation of
hypnosis and analgesia have been proposed in (Struys
et al., 2001; Dumont et al., 2009; Soltesz et al., 2013;
Nascu et al., 2015; Liu et al., 2012; Merigo et al., 2017;

Padula et al., 2017, 2016). The obtained results show that
a more stable depth of hypnosis can be achieved with
less drug administration, which is advantageous both for
the patient and for the anesthesiologist, whose workload
is reduced. These advantages are further improved by
implementing a feedback control system also for the third
pillar of general anesthesia: muscle relaxation. In fact, the
use of non-depolarizing types of muscle relaxants allows
the blocking of the neuromuscular transmission so that
intubation and surgical procedures are facilitated. The
neuromuscular blockade (NMB) level is measured by using
a supra-maximal train-of-four (TOF) stimulation of the
ulnar nerve (McGranth and Hunter, 2006). The proce-
dure consists of an evoked electromyography at the hand
by electrical stimulation of the adductor policies muscle.
The level varies between 100%, which corresponds to a
full muscle activity, and 0%, that is the full paralysis of
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the patient. Clinical practice usually consists of a first
induction phase with a standard bolus calibrated on the
patient weight (for atracurium muscle relaxant it is 500
[µg/kg]) followed by a maintenance phase where a con-
stant NMB level of 10% is typically required. A Wiener
model is usually employed to mathematically describe
the pharmacokinetic/pharmacodynamic (PK/PD) human
body response to muscle relaxants. In particular, the PK
part consists of a mammillary compartmental model that
describes the drug distribution in the human body by
linear dynamics equations (Ward et al., 1983). The output
of the PK model is the blood concentration of the drug,
which is also the input of the PD model, that describes
the clinical effect of the drug. In particular, the blood
concentration is related with the effect-site concentration
through a linear transfer function, and to the clinical effect
by a nonlinear static function, referred to as Hill function
(Weatherley et al., 1983). In this model there are eight
parameters that depend on the patient. A set of twelve
individual PK models and the average values of the PD
parameters are reported in (Ward et al., 1983; Weatherley
et al., 1983) for the atracurium muscle relaxant.
An alternative model called parsimoniously parameterized
model (PP) for the NMB response has been presented in
(Silva et al., 2012). Even though the PP is not a physiolog-
ical model, it maintains a Wiener structure, but it requires
a reduced number of patient-dependent parameters. The
accuracy of the PP model has been proven in (Silva et al.,
2013), and in (Rocha et al., 2013) the estimation of the PP
model parameters based on clinical data has been provided
and a dataset of sixty patients models is reported.
Several approaches for the NMB control problem have
been proposed in the literature, and different solutions
have been considered to address the robustness issue (Men-
donça and Lago, 1998; Lago et al., 1998; Zhusubaliyev
et al., 2015; Kansanaho and Olkkola, 1996; Teixeira et al.,
2014; Silva et al., 2015; Lourenço et al., 2013; Simanski
et al., 2009; Almeida et al., 2017; Mason et al., 1999; Lemos
et al., 2005). Despite of the high number of different ap-
proaches proposed, as mentioned in (Mendonça and Lago,
1998), it is unlikely for a given method to be globally better
than all the other methods because of the process dynamic
uncertainties. Further, a rigorous approach for the tuning
of PID controllers for the NMB level regulation is still
lacking. In this paper we propose a PID control scheme for
the regulation of the NMB level after the standard bolus of
the induction phase by considering the atracurium infusion
as control variable. We exploit genetic algorithms in order
to find the optimal PID parameters tuning that minimizes
the worst-case fitness function over a population of 12
PK/PD models of patients (Ward et al., 1983; Weatherley
et al., 1983). In this way, we explicitly consider the inter-
patient variability in the tuning procedure. The considered
objective functional comprises two competing objectives:
the integrated absolute error (IAE) and the total varia-
tion (TV) of the control action. As such, a Pareto front
determines the set of all the optimally tuned controllers
from which we select the controller that allows the best
trade-off between the control performance and the control
effort. The obtained PID control is then applied to the
dataset of PP models presented in (Rocha et al., 2013) in
order to further verify the robustness against the patient
variability.

Fig. 1. Mammillary two-compartmental model for
atracurium.

2. MODELS DESCRIPTION

2.1 Full PK/PD model

The neuro-muscular level achieved by the administration
of atracurium is modeled by means of a Wiener PK/PD
model, which is composed by a linear part in series with
a static nonlinear function. The linear part of the model
proposed in (Ward et al., 1983; Weatherley et al., 1983)
comprises a mammillary two-compartmental model, which
is used to describe the distribution and elimination of the
drug, i.e., the pharmacokinetic and a pharmacodynamic
fictitious effect-site compartment, that represents the lag
between the plasma concentration and the drug effect.
Finally, a static nonlinear function referred to as the Hill
function correlates the effect-site drug concentration Ce(t)
and clinical effect r(t). As analyzed in (Lago et al., 1998),
however, the standard PK/PD model for NMB does not
fit the real clinical data considering the atracurium ad-
ministration. An empirical modification of the presented
PK/PD model has been proposed in (Lago et al., 1998),
and validated and effectively applied in (Mendonça et al.,
2004). This solution consists in an augmented PD model
obtained by introducing an additional effect site compart-
ment whose concentration, Ĉe, becomes the input for the
Hill function. The overall PK/PD model is represented
in Figure 1, where u(t) [µg kg−1min−1] is the atracurium
infusion rate, i.e., the control variable, m1(t) and m2(t)
[µg/kg] are the drug masses in the central and peripheral
compartments, V1 and V2 [ml/kg] are the volumes of dis-
tribution, k12 and k21 [min−1] are the rate constants gov-
erning the transfer of the drug between the compartments,
k10 [min−1] is the rate constant governing the elimination

of the drug, Ce(t) [µg/ml−1] and Ĉe(t) are [µg/ml−1]
are the effect-site compartment and the augmented effect-
site compartment concentrations, respectively, and ke0
[min−1] and τ [min−1] are the corresponding equilibration
rate and time constants. The state equations for the two-
compartment PK model are

dm1(t)

dt
= −(k10 + k12)m1(t) + k21m2(t) + u(t)

dm2(t)

dt
= k12m1(t) + k21m2(t).

(1)

The transfer and elimination rate constants kij for i 6= j
are patient dependents. They are derived from the values
of the volume of distribution of the central compartment
V1 [ml/kg], from the clearance Cl [ml/min/kg)] normal-
ized with respect to the patient weight, and from the half

lives times tα1/2 [min] and tβ1/2 [min]:
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Id Weight [kg] V1[ml/kg] Cl[ml/min/kg] tα
1/2

[min] tβ
1/2

[min]

1 65 46 5.0 2.8 21.7

2 66 42 4.9 1.6 23.1

3 58 47 6.0 1.7 16.9

4 89 34 5.7 1.3 21.7

5 80 25 4.8 1.4 20.4

6 63 69 6.5 2.3 19.8

7 80 78 6.2 2.2 19.8

8 97 43 4.4 2.0 19.0

9 91 28 5.5 1.0 17.8

10 79 51 5.5 2.7 22.4

11 69 53 4.9 2.4 16.1

12 66 76 6.4 3.3 20.6

Table 1. PK parameters of the considered
patients models (Ward et al., 1983).

k10 =
Cl
V1

k21 =
αβ

k10
k12 = α+ β − k10 − k21, (2)

where

α =
log(2)

tα1/2
β =

log(2)

tβ1/2
. (3)

The output of the PK model is atracurium concentration
in blood plasma given by

Cp(t) =
m1(t)

V1
. (4)

In (Ward et al., 1983), the values of the parameters of
the PK model for atracurium for twelve nominal patients
representative of a wide range of population are reported.
The parameters values are shown in Table 1. The relation-
ship between the plasma concentration and the effect-sites
concentrations Ce(t) and Ĉe(t) are:

dCe(t)

dt
= ke0(Cp(t)− Ce(t))

dĈe(t)

dt
=

1

τ
(Ce(t)− Ĉe(t)), (5)

where ke0 [min−1] and τ [min] are also patient-dependent.
However, in this paper we consider ke0 fixed at 0.1 [min−1],
which is regarded as a suitable average value to represent
the patient PD (Weatherley et al., 1983). According to
the assumption of average PD model parameters, also the
time constant τ is fixed. A suitable value of τ is determined
by calculating the difference between the average settling
time T̄10std to reach a NMB level of 10% for the standard
12 patients in Table 1 and the one, denoted as T̄10real

,
obtained in the real cases studied in (Rocha et al., 2013):

τ = |T̄10std − T̄10real
| = 6.2670 [min]. (6)

The Hill function that correlates the additional effect-site
drug concentration Ĉe(t) and clinical effect r(t) is

r(t) =
100 · Cγ50

Cγ50 + Ĉγe (t)
, (7)

where the C50 [µg/ml−1] and γ (dimensionless) are also
patient-dependent and represent, respectively, the neces-
sary concentration of the drug to reach the half maximal
effect and the steepness of the curve, i.e, the receptiveness
of the patient to the drug. The clinical effect r(t) [%]
corresponds to the percentage of NMB level detected by
the TOF sensor. In this paper, according to (Weatherley
et al., 1983), we consider the average values of C50 and γ,
which are 0.625 and 4.25 respectively.

Fig. 2. Proposed PID control structure for the administra-
tion of atracurium

2.2 PP reduced model

Mainly due to the high number of parameters of the
standard PK/PD model, a new minimally parametrized
parsimonious model has been presented in (Silva et al.,
2012) for NMB level description. It maintains a Wiener
model structure, composed by a linear part in series
with a nonlinear Hill function, but it has a reduced
number of patient-dependent parameters. In (Silva et al.,
2013), a comparison with the full PK/PD model has been
performed and the accuracy of the PP model has been
proven. The linear part of the PP model is a third-order
system that relates the drug infusion u(t) [µg kg−1min−1]
to the state variable x3(t) [µgml−1], according to the
following equations

dx1(t)

dt
= −k3αx1(t) + k3αu(t)

dx2(t)

dt
= k2αx1(t)− k2αx2(t)

dx3(t)

dt
= k1αx2(t)− k1αx3(t),

(8)

where x1(t), x2(t), x3(t) are the state variables, k1 = 1,
k2 = 4, k3 = 10 are fixed parameters (Silva et al., 2012)
and α is the only patient-dependent parameter. Finally,
the state variable x3(t) is related to the output of the
model, which is the NMB level r(t), through the Hill
equation

r(t) =
100 · C̄γ50
C̄γ50 + xγ3(t)

. (9)

According to (Alonso et al., 2008),the parameter C̄50 in
the PP model can be fixed to the value 3.2425 [µgml−1]
so that α and γ become the only free parameters, reducing
the number of patient-dependent parameters form 8 to 2.
In (Rocha et al., 2013) the estimation of the PP model
parameters based on clinical data has been performed and
the dataset of 60 patients models therein developed is
considered for the purpose of this paper.

3. PID CONTROL ARCHITECTURE

The proposed PID control structure is shown in Figure
2, where rref (t) is the set-point signal, that is, the desired
NMB level r(t) of the patient. The reference level is usually
fixed to 10%, according to the clinical practice. The signal
e(t) is the error variable and, as aforementioned, u(t) is
the atracurium infusion rate. A standard drug bolus of 500
[µg/kg] provides the initial induction phase. The transition
between the induction phase and the maintenance phase
is handled by the switch on e(t) that, after a predefined
time tcontr of 20 [min] from the initial bolus, enables the
PID controller. The value of tcontr, that is, duration of the
induction phase, has been decided based on the average
clinical effect-time of the atracurium bolus. After tcontr,
the PID algorithm computes the control action in order
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to achieve and maintain the set-point value. The PID
controller is expressed in ideal form:

C(s) = Kp

(
1 +

1

Tis
+

Tds

1 + Td

N s

)
, (10)

where Kp is the proportional gain, Ti is the integral
time constant, Td is the derivative time constant and
Td/N , with N = 10, is the filter time constant that
renders the controller proper. Actually, the PID controller
is implemented in discrete form by considering a sampling
period of 1/3 [min]. The choice of the sampling period
is related to the minimum time interval allowed by the
TOF but it is in any case acceptable by considering the
time constants of system. An anti-windup method has
also been implemented by using a conditional integration
technique (Visioli, 2006). Further, the derivative action
has been applied only to the feedback signal to avoid
the derivative kick phenomenon. The output of the PID
controller is normalized with respect to the patient weight
and bounded by a saturation block, which represents
the infusion rate bounds of a standard pump (Graseby
3400, Smiths Medical, London, UK). The lower saturation
corresponds to the zero infusion while the maximum rate
is 200 [mg/min] for atracurium 10 [mg/ml].

4. TUNING OF THE CONTROLLER PARAMETERS

The proposed control architecture requires the tuning of
the PID controller parameters Kp, Ti and Td. The proce-
dure should consider the control specifications defined by
the clinical practice. After the induction phase, handled by
the standard atracurium bolus, the set-point NMB level of
10% has to be achieved as fast as possible without exces-
sive overshoots or undershoots. During the maintenance
phase, r(t) has to be maintained as stable as possible,
avoiding oscillations on the process output. The variations
of the control action have to be minimized to obtain a
stable drug infusions, that allows the clinical practice of
atracurium administration to be mimicked and reduces
the stress of the actuator. The typical tuning rules used
for PID controller tuning, however, are not suitable for the
NMB control problem because of the process complexity.
To overcome this limitation, the parameters Kp, Ti and Td
have been tuned by numerically solving an optimization
problem via genetic algorithms (Mitchell (1998)), which
are capable to determine the global optimum of an opti-
mization problem in a stochastic sense. In particular, an
optimization function composed by two terms has been
selected to comply with the required trade-off between
control performance and control effort. The chosen indexes
are the integrated absolute error (IAE) and the total
variation of the control action (TV):

IAE =

∫ ∞
0

|rref (t)− r(t)|dt

TV =

∞∑
k=0

|uk − uk−1|,
(11)

where uk is the current control action value and uk−1 is
the previous one. The optimization function is defined as

J(λ) = IAE + λTV, (12)

where λ obviously weights the contribution of the TV on
the performance. The optimal tuning of the controller is

50 100 150 200 250

IAE

1000

1500

2000

2500

3000

3500

T
V

Fig. 3. Pareto curve for optimized tuning with different λ
values

finally obtained by solving the following min-max opti-
mization problem

min
kp,Ti,Td

max
k∈{1,...,12}

Jk(Kp, Ti, Td;λ) (13)

where Jk(Kp, Ti, Td;λ) denotes the performance index
obtained for the k-th patient in Table 1. In other words,
the genetic algorithm fitness function, which is calculated
from the tcontr time instant on, considers the worst-case
of the 12 patient models at each iteration of the algorithm
in order to explicitly take into account the robustness
porblem in the tuning process. As such, the entire set
of PK patients parameters shown in Table 1 and the
average parameters of the augmented PD empirical model
have been considered for the tuning. Several optimizations
have been performed with different values of λ in the
range [0.01, 0.5], obtaining the Pareto curve represented in
Figure 3, where each dot represents the optimal tuning for
a specific λ. The influence of λ on the control is clearly
observable in Figure 4, where simulations on patient 1
are shown. In general, with small values of λ, the IAE
index has the major contribution in the fitness function
and overshoots and settling times of the process output
are minimized by increasing the aggressiveness of the
controller, which results in an higher control effort. On
the contrary, high values of λ increase the contribution of
TV in the fitness function delivering a smoother control
action, payed by a decrement of the tracking performance.
Finally, to select the controller that provides the best
trade-off between the control performance and the control
effort the maximum curvature point of the Pareto curve
(marked with the biggest dot in Figure 3) is chosen. It
represents the optimization performed with λ=0.3, and
the corresponding optimal PID parameters are shown in
Table 2.

Parameter Value

Kp 64.9721 [µg/min]

Ti 17.5456 [min]

Td 6.3897 [min]

Table 2. Optimal PID parameters tuning ob-
tained with λ=0.3.
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Fig. 4. Simulations on patient 1 with λ=0.01 (dashed line)
and with λ=0.5 (solid line)

Fig. 5. Simulated responses of the 12 empirical models

5. SIMULATION RESULTS AND DISCUSSION

In this section the simulation results of the proposed
PID tuning are shown. A first test has been performed
on the empirical models of the 12 patients. This test is
necessary to evaluate the controller performance with the
proposed tuning procedure and consists of an induction
phase followed by a maintenance phase of 150 [min]. Then,
the controller is switched off and the NMB level naturally
increases (without using antagonist drugs). The results are
shown in Figure 5. The NMB is induced with the initial
standard bolus, as mentioned in Section 3. As it possible
to see in the top plot, the NMB levels of all patients
exhibits an undershoot. The controller initiate to regulate
the drug infusion from tcontr, when r(t) is still below the
set-point. Therefore the atracurium infusions, shown in the
bottom plot, start increasing after tcontr, when the NMB
levels of the patients, naturally increasing, crosses the set-
point value. The performance is satisfactory for the clinical
practice: the NMB levels attain the set-point reference and
exhibit limited overshoots and acceptable settling times.
The control actions have smooth trends with bounded
oscillations that satisfy the technical specification on the
control effort. The proposed control structure has been

Fig. 6. Simulated responses of the database of PP models

also tested on the PP models database reported in (Rocha
et al., 2013), to verify the inter-patient robustness, which
is an essential characteristic for the control of NMB. The
results are shown in Figure 6. The control system is robust
with respect to the inter-patient variability as all the
clinical specifications are always fulfilled. Overshoots, set-
tling times and control variables are also comparable with
those obtained with the 12 nominal patients. This result
validates the tuning procedure of the proposed control
structure that guarantees a satisfactory performance also
with models that are estimated from real clinical data.

6. CONCLUSIONS

In this paper we have presented a PID control algorithm
for the NMB level automatic regulation. The tuning of the
controller is obtained by solving a min-max optimization
based on a two-term multi-objective optimization func-
tion that considers the clinical specifications. A genetic
algorithm has been successfully employed to solve the
optimization problem, providing a suitable tuning of the
PID parameters. Simulation results have shown that the
methodology guarantees a satisfactory performance and
provides the required inter-patient robustness in spite of
the simplicity of the control architecture.
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