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Abstract: The usability of advanced control methods of physiological processes have been
several times demonstrated. Advanced (i.e. MPC) control approaches cope with practical
difficulties of limited measurability of the state variables, model-imprecisions, significant inter-
patient variability of the available model’s parameters and limitations in the sampling frequency
of the variables that at least in principle can be directly measured. However, the lack of the
necessary information prevents the use of state estimators. Compensation of the effects of the
presence of model-imprecisions needs the application of robust control methods or adaptive
techniques. The Proportional-Derivative (PD) control completed with Robust Fixed Point
Transformation (RFPT)-based adaptive control was invented for tackling such difficulties. The
current paper investigates the applicability of this technique in case of angiogenic growth of
tumors using different scenarios of tumor volume measurement. Conclusions are drawn on the
basis of numerical simulations.
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1. INTRODUCTION

In contrast to the classical anti-cancer therapies as
chemotherapy and radiotherapy, modern approaches use
Targeted Molecular Therapies (TMTs) that fight directly
against specific cancer mechanisms (Charlton and Spicer
(2016)). Their main advantage consists in their limited
side effects. As it is well-known, the growth of tumor
cells is limited after reaching a given cell size (Distler
et al. (2003)). In further development of the tumor the
phenomenon of angiogenesis (i.e. the process of new blood
vessel formation) plays essential role. Via inhibiting this
process (i.e. antiangiogenesis) the growth of the cancerous
cells can be kept at bay (Harris (2003); Ilic et al. (2016)).

The idea leads to a pathophysiological control problem
with the aim of determining the appropriate value of
inhibitor to be injected automatically. Significant mod-
eling and control efforts were done in the last decades
regarding the antiangiogenic tumor control (Michelson
and Leith (1997); Hanhfeldt et al. (1999); Ledzewicz and
Schättler (2005); Lobato et al. (2016); Drexler et al.
(2017a); Klamka et al. (2017); Zhou et al. (2015); Ionescu
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et al. (2017)), summarized by the review paper Vasudev
and Reynolds (2014). Recently, a minimal model of tu-
mor growth with angiogenic inhibition by Bevacizumab
administration has been studied (Drexler et al. (2017c))
and developed (Drexler et al. (2017b)) using the latest
medical findings in the field. Czakó et al. (2017) studied
the use of the same minimal model for a Robust Fixed
Point Transformation (RFPT)-based adaptive controller
as a first RFPT-based application for tumor growth con-
trol in the topic.

Transforming a mathematical problem into a fixed point
problem, and subsequently solving it via iteration is not
new: it goes back to the 17th century’s Newton-Raphson
method (Ypma (1995)), while nowadays its recent variants
have been formulated (Kelley (2003); Deuflhard (2004)).
For adaptive control purposes it was introduced as al-
ternative to the Lyapunov function-based approach (Tar
et al. (2009)). In a wider sense this approach is based on
Banach’s fixed point theorem (Banach (1922)). Its essence
consists in the fact that in a linear, normed, complete
metric space (i.e. Banach-space) contractive maps generate
Cauchy sequences that necessarily are convergent due to
the completeness of the space. It was demonstrated that
the limit of such a self-convergent sequence is the solution
of the fixed point problem (Tar et al. (2009); Dineva et al.
(2016)).
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The RFPT-based approach has the great advantage that
it does not require full state estimation: it can work
by directly measuring only the controlled variable and
knowing the control signal in use. Its applicability was
successfully pointed out in case of physiological problems,
e.g. type 1 diabetes mellitus (Eigner et al. (2015); Kovács
(2017)) in which Proportional-Integral-Derivative (PID)
controller was completed with the RFPT approach or
anaesthesia control (Dineva et al. (2016)).

The current paper investigates the RFPT approach com-
bined with classical control method, and it is structured as
follows. In Section 2 the applied tumor growth model is in-
troduced. In Section 3 the application of the RFPT-based
control is described. In Section 4 simulations results are
presented, followed by conclusions and further direction
possibilities (Section 5).

2. ANALYSIS OF THE TUMOR GROWTH MODEL
IN USE

The detailed model in use is a third order one and was
published in Hanhfeldt et al. (1999). The state variables
of the model are the volume of the tumor x1(t)

[
mm3

]
,

the volume of the supporting vasculature x2(t)
[
mm3

]
,

and the inhibitor serum (Bevacizumab) level x3(t) ≡
g(t)

[
mg · kg−1

]
. The model equations are as follows:

ẋ1(t) = −λ1x1(t) log

(
x1(t)

x2(t)

)
ẋ2(t) = bx1(t)− dxα1 (t)x2(t)− ηx2(t)g(t)
ġ(t) = −λ3g(t) + u(t)

(1)

where the control signal is the input rate of the in-
hibitor u(t)

[
mg · kg−1 · h−1

]
. The model parameters are

λ1 = 0.192/24.0
[
h−1

]
, b = 5.85/24.0

[
h−1

]
, d =

0.0087/24.0
[
mm−2 · h−1

]
, η = 0.66/24.0

[
mm−3 · h−1

]
,

λ3 = 1.3/24.0
[
h−1

]
, and α = 2/3.

The aim is to control x1(t) by the use of the signal u(t) and
assuming that x1(t) is directly measurable. To determine
the relative order of the control task we have to observe
that ẋ1(t) is not directly influenced by u(t). It is evident
that

...
x 1(t) depends on ẍ2(t) that directly depends on ġ(t)

what is influenced by u(t). As a consequence, the relative
order of our task is 3. To reveal the dependence of

...
x 1(t)

on u(t), by making the necessary differentiations we arrive
to the cascade equations as follows:

ẍ1(t) = −λ1ẋ1(t) log

(
x1(t)

x2(t)

)
− λ1ẋ1(t) + λ1

x1(t)

x2(t)
ẋ2(t)

...
x 1(t) = ẍ1(t)

[
−λ1 log

(
x1(t)

x2(t)

)
− λ1

]
− λ1

ẋ21(t)

x1(t)
−

−λ1
ẋ1(t)ẋ2(t)

x2(t)
+ λ1

(
ẋ1(t)

x2(t)
−
x1ẋ2(t)

x22(t)

)
ẋ2(t)

+λ1
x1(t)

x2(t)

(
bẋ1(t)− dαx1(t)α−1ẋ1(t)x2(t)

−dxα1 (t)ẋ2(t)− ηẋ2(t)g(t)
)

+ λ1ηx1(t)λ3g(t)
−λ1ηx1(t)u(t)

(2)
that for u(t) can be summarized in an affine form as
follows:

...
x 1(t) = B (x1(t), x2(t), g(t))− λ1ηx1(t)u(t) (3)

where B (x1(t), x2(t), g(t)) represents that all the deriva-
tives of the state variables are determined by themselves.
Equations (1) and (2) allow us to observe the followings:

(1) The
0

0
- type singularity in (1) does not allow this

model to explain or describe the tumor formation
in its early stage that precedes angiogenesis. From
this point of view our model is similar to that of
the Newtonian classical mechanics that allows us the
calculation of the system’s trajectory if the initial
conditions are known.

(2) As x1 → 0,
...
x 1(t) becomes insensitive to u(t) that

anticipates, that for keeping the tumor size at very
low level it would require the use of huge Bevacizumab
ingress rates. In other words, the “Tamed Cancer”
concept (i.e. our research concept) is practically rea-
sonable: the aim cannot be the complete removal of
the tumor: instead of that it should be kept at a low,
but finite level.

(3) During numerical simulations the physically not in-
terpretable regions as x1(t), x2(t), g(t) < 0, and the
physically not realizable ingress rates as u(t) < 0
must be evaded by appropriately completing the
equations (1) and (2). The physically clear situation
corresponds to a targeted x1final

> 0 state at which
these phenomenological restrictions do not occur.

(4) As we can directly measure only x1(t), but no prac-
tical possibility exists for measuring x2(t) and g(t),
the detailed model practically is not available for
developing a classical Model Predictive Controller
(MPC) (e.g. Grüne and Pannek (2011); Grancharova
and Johansen (2012)). By other words, due to the
lack of satisfactory information we cannot construct
a Kalman filter to estimate each state variable.

This situation ab ovo anticipates the possible use of either
some robust controller for a higher relative order task as
the Robust Variable Structure / Sliding Mode (VS/SM)
Controller (Levant (1998)), or that of some adaptive
technique. Since the VS/SM-type controllers normally
apply drastic control signals and may cause chattering,
in the sequel we concentrate on the use of an PD-RFPT-
based adaptive technique.

3. APPLICATION OF THE PD-RFPT-BASED
TECHNIQUE FOR ANGIOGENIC TUMOR GROWTH

Figure 1. Schematic structure of the Fixed Point
Transformation-based Adaptive Controller

According to Fig. 1 describing the schematic structure of
the RFPT-based control design, a nominal trajectory to
be tracked can be designed for xN1 (t) (qN in Fig. 1) as
follows (Czakó et al. (2017)):
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xN1 (t) = x1final
+ x1ini

(1− tanh(ct)) (4)

where the initial condition corresponds to t = 0, c > 0, and
x1final

> 0 that guarantees the avoidance of the dynamic
singularity of the model.

The PD term is embedded into the Kinematic Block and
is responsible for the elimination of the actual tracking
error denoted by e(t) = xN1 (t) − x1(t). Since there is a
direct connection between the u(t) control signal and the
third derivative of the first state

...
x 1(t) we have to use

at least a third order

(
d

dt
+ Λ

)3

PD term. Taking into

account that for a constant Λ > 0 the solution of the

differential equation

(
d

dt
+ Λ

)
h(t) ≡ 0 converges to zero

since it is h(t) = h(t0)exp(−Λ(t − t0)), the tracking error
can be used for the prescription of the desired

...
xD1 as(

d

dt
+ Λ

)3 [
xN1 (t)− x1(t)

]
≡ 0, that results in:

...
xD1 =

...
xN1 (t) + Λ3e(t) + 3Λ2ė(t) + 3Λë(t) (5)

Consequently, the value
...
xD1 corresponds to the “Desired

Response” rDes (Fig. 1). In order to achieve this response,
following adaptive deformation of the control signal used
in the previous control step, the available approximate sys-
tem model is used for the calculation of the “control force”
(denoted by Q in Fig. 1, which, in our case corresponds to
u(t)). This force is exerted on the controlled system that
produces the “realized response” (r in Fig. 1,

...
x 1(t) in our

case).

In the case of a digital controller the “Delay” in the
figure corresponds to the time resolution of the digi-
tal controller. If

...
xD1 varies only slowly, an iterative se-

quence of the control signals {r1 = rDes1 , . . . , rn+1 =
G
(
rn, f(rn), rDes

)
, . . .} can be constructed, that, accord-

ing to Banach’s Fixed Point Theorem, converges to the
solution of the control task r ≡ f(r?) = rDes if the
parameters of the deformation function G

(
rn, f(rn), rDes

)
are appropriately set. (Here f(r) is referred as the “re-
sponse function” of the controlled system that depends on
the parameters of the approximate model and the actual
system’s properties. Practically, during one digital control
step there is a possibility to make a single step of iteration.

In our case the F (ξ) = atanh (tanh(ξ +D)/2) real func-
tion with the parameter D = 0.3 was used that has an
attractive fixed point at ξ? ≈ 0.2594 used in the FPT:

ri+1 =
[
F (A‖f(ri)− rDes‖+ ξ?)− ξ?

] f(ri)− rDes

‖f(ri)− rDes‖
+ri

(6)
applying the concept of the Frobenius norm. In Eq. (6)
A is an adaptive parameter. For rk = r? that provides
f(r?) = rDes it yields that rk+1 = rk, meaning that if
r? is the solution of our task, it is also the fixed point
of this function. For achieving convergence parameter A
has to be set appropriately. In the sequel, we investigate
the possibilities of increasing the sampling time, i.e. the
frequency of measuring of the actual tumor volume x1(t).

4. SIMULATION RESULTS

In the first step “ideal possibilities” were assumed for
measuring x1 in each hour (δt = 1h). As a result, the time-
resolution of the numerical Euler integration was 1/24h.

For the tracking parameter c =
1

200
h−1, and A = −6

h3

mm3

with x1final
= 53mm3 and Λ = 0.015h−1 a detailed model

was assumed for the calculation of B (x1(t), x2(t), g(t)) in
order to obtain information on these possible additive
terms. In these simulations the initial values x1(0) =
x2(0) = 104mm3 were chosen.

All of the discrete time steps have been selected in accor-
dance to the model properties, measurement technology
and physiological realities. To get a full picture, we inves-
tigated four scenarios (δt = [1, 24, 72, 168]h).

The 3rd order time-derivatives were estimated as

...
x 1(t) ≈

x1(t)− 3x1(t− δt) + 3x1(t− 2δt)− x1(t− 3δt)

δt3
(7)

Figure 2. The size of the tumor and its feeding vascular
system in the “ideal case”, the ingress rate of the
serum Bevacizumab, and the 3rd order derivatives

Figure 3. The inhibitor serum level and the additive term
B (x1(t), x2(t), g(t)) in the “ideal case”

Figures 2 and 3 reveal the operation of the adaptation: the
desired and the “realized” values are in each other’s close
vicinity, and they seriously differ from the “deformed”
values. The increase in the inhibitor serum level and
that in its ingress rate corresponds to our expectation
that decreasing x1(t) it decreases the sensitivity of the
mechanism for the Bevacizumab ingress rate.
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Consequently, in further calculations instead of the “ex-
act” model (3) its affine approximation (8) was applied
that does not require the measurement of x2(t) and x3(t) ≡
g(t). The role of the adaptivity is to compensate the effects
of the affine approximation in:

...
x 1(t) = B̂ − λ1ηx1(t)u(t) , (8)

with a constant B̂ = 0.5mm3 · h−3.

The practical usability of the theorem depends on its
needed measurement frequency for variable x1(t). The
worst case corresponds to the δt = 24h cycle time (i.e.
to daily measurements). While fixing the times-step of
the Euler integration at δtintl = 1h, as δt increases, (7)
may become a more or less “corrupted approximation”, a
“substitute”, and finally some “surrogate” of the measured
3rd time-derivatives. In such cases the serum is injected in
the 1st step of the Euler integration, and u = 0 in the
other segments of this integration. The simulation results
obtained for δt = 24h are given in Fig. 4 and 5.

Figure 4. The size of the tumor and its feeding vascular
system in the “δt = 24h case”, the ingress rate of
the serum Bevacizumab, and the estimated 3rd order
derivatives

Figure 5. The inhibitor serum level and the trajectory
tracking in the “δt = 24h case”

It is evident that during a day-long (δt = 24h) period,
when the serum is injected in the 1st hour after the tumor
size measurement, the decrease in g(t) is considerable due
to the decay-rate λ3. This causes fine “ripples” in the
tumor volume function x1(t), and an even more visible
variation in the volume of the supporting vasculature.
As the serum leaves the human body, the process of
angiogenesis accelerates.

These effects become more visible for δt = 72h cycle-time
in Fig. 6. It is evident that the tumor has enough time for
regrowing before the next injection of the serum.

Figure 6. The size of the tumor and its feeding vascular
system in the “δt = 72h case”, the ingress rate of
the serum Bevacizumab, and the estimated 3rd order
derivatives

Finally, the weekly treatment would be “ideal”. For this
purpose the δt = 168h cycle-time must be used (Fig. 7).

Figure 7. The size of the tumor and its feeding vascular
system in the “δt = 168h case”, the ingress rate of
the serum Bevacizumab, and the estimated 3rd order
derivatives

It is evident that during the weekly treatment the sup-
porting vasculature has enough time to grow back, and
the tumor also can grow back.

To evade the use of too much serum, in the next simulation
we returned to the δt = 72h (3 days) cycle-time, but
increasing the allowable “final tumor size” to x1final

=

103mm3 (Fig. 8 and 9). According to the simulations this
parameter setting seems to be practically acceptable.

Finally, the role of the initial values x1(0) and x2(0) must
be clarified. Due to the 0/0-type singularity in the dynamic
model we do not have idea on any interdependence be-
tween these variables, as for a given x1(0) we have to make
calculations for various x2(0) values. Let at first consider
the pair x1(0) = 104mm3, x2(0) = 106mm3 (Fig. 10 and
11).

It is interesting to see that in comparison with the Fig. 8
and 9, there is no considerable difference. The huge ini-
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Figure 8. The size of the tumor and its feeding vascular
system in the “δt = 72h, x1final

= 103mm3 case”,
the ingress rate of the serum Bevacizumab, and the
estimated 3rd order derivatives

Figure 9. The inhibitor serum level and the trajectory
tracking in the “δt = 72h, x1final

= 103mm3 case”

Figure 10. The size of the tumor and its feeding vascular
system in the “δt = 72h, x1final

= 103mm3, x1(0) =

104mm3, x2(0) = 106mm3 case”, the ingress rate of
the serum Bevacizumab, and the estimated 3rd order
derivatives

tial vasculature quickly decreases and the injected serum
rate is not increased by orders of magnitudes. Secondly,
consider the pair x1(0) = 104mm3, x2(0) = 102mm3

(Fig. 12). Again, the differences between the previously
investigated cases and the present one do not seem to be
considerable.

Figure 11. The inhibitor serum level and the trajectory
tracking in the “δt = 72h, x1final

= 103mm3, x1(0) =

104mm3, x2(0) = 106mm3 case”

Figure 12. The size of the tumor and its feeding vascular
system in the “δt = 72h, x1final

= 103mm3, x1(0) =

104mm3, x2(0) = 102mm3 case”, the ingress rate of
the serum Bevacizumab, and the estimated 3rd order
derivatives

5. CONCLUSIONS

In this paper the PD-RFPT-based adaptive control ap-
proach was investigated for antiangiogenic tumor growth
control on the Hanhfeldt model. The RFPT method is
controlled by a single adaptive parameter. Numerical sim-
ulations were carried out by the use of the MIT’s Julia
package and Euler integration with maximal discrete time-
step of δtintl = 1h.

Considering the
0

0
-type singularity of the model and the

inefficiency of the Bevacizumab serum in inhibiting angio-
genesis at very small tumor volumes, a nominal trajectory
starting at x1(0) = 104mm3 and ending at x1final

=

103mm3 final tumor volume with δt = 72h sampling
and treating (serum injection) frequency can be suggested
as an “acceptable” compromise. It was presented that
the initial volume of the supporting vasculature x2(0) ∈[
102, 106

]
mm3 surprisingly does not seem to have signif-

icant effects on the results.

It should be noted that the suggested control is based only
on the measurement of the tumor volume variable x1(t)
in the sampling times, and does not need the estimation
or measurement of the state variables x2(t) and x3(t).
Instead of that it uses a simple “affine model” defined in
(8), that contains a simple constant instead of the “exact
contributions” that are very complicated functions of the
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state variables. This fact has a great practical advantage.
Although the suggested control has the relative order 3,
it was found that it can use the very rough estimation or
“surrogate” of

...
x 1 on the basis of the simple estimation

defined in (7).

Regarding further researches, it seems to expedient inves-
tigating the available other models of cancer treatment
applying angiogenic inhibition mechanisms.
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