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Abstract This paper addresses the important and well studied problem of synthesising PID
controllers for load disturbance rejection. The tuning rationale, on which some general words
are spent in connection to literature research, is to shape the disturbance-to-output frequency
response, together with conveniently assigning the poles of the corresponding transfer function.
Analytical tuning formulæ are derived, to maximise simplicity and make the presented method
applicable on any device. Simulation results support the proposal.
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1. INTRODUCTION

In process control, “load disturbances are often the ma-
jor consideration” (Åström and Hägglund, 2004). As a
consequence, a lot of research effort has been spent on
their effective rejection. However, if one restricts the focus
to model-based tuning and explicit rules, two characteris-
tics that are often considered beneficial for the industrial
acceptance of an (auto)tuning procedure, the panorama
becomes quite narrower.

In this paper we address the type of tuning technique just
sketched, and with respect to a major reference, hence a
good representative of the state of the art, we propose
a solution that is simpler, in that it adopts a uniform
controller structure, and produces comparable or better
results. It has to be noted that our technique – like its
reference counterpart – considers delay-free processes: this
may or may not be a limitation, as discussed in Leva and
Maggio (2010); anyway, addressing the delay (dominated)
case will be the subject of future research.

The paper is organised as follows. Section 2 provides a
minimal review of related work, and motivates the par-
ticular research here presented. In Section 3 the proposed
tuning rules are derived, and in Section 4 they are applied
to some process structures that are relevant according to
the literature. Sections 5 and 6 respectively report a bench-
mark simulation campaign and a laboratory experiment,
to evidence the achieved results and advantages, while
Section 7 concludes the paper by drawing some conclusions
and outlining future work.

2. BRIEF LITERATURE REVIEW

Many approaches were proposed to PI/PID tuning for load
disturbance rejection, historically in an attempt to cure an
“overemphasis on the set point response” (Shinskey, 2002),
but basically driven by the necessities of process control:
Chen and Seborg (2002) resorted to direct synthesis,

Vranc̆ić et al. (2004) adapted the magnitude optimum
technique, works like Liu and Gao (2008) and Leva (2005)
employed relay-based tuning, others such as Shamsuzzoha
and Lee (2008) proposed PIDs with additional filters,
and many adopted an IMC-like paradigm (Liu and Gao,
2010; Skogestad and Grimholt, 2012). Also, several works
concentrate on “balancing” tuning for set point tracking
and for disturbance response, see e.g. Arrieta et al. (2010);
Alcántara et al. (2013)

In this work we concentrate on model-based tuning, ac-
counting for the form of the process model but at the
same time considering different possible structures for
it, and aiming at explicit tuning formulæ. According to
Scopus, to date the most cited paper encompassing all
the characteristics above, is that by Horn et al. (1996).
The authors adopt an IMC-centred approach, which is
very well suited to achieve model-based explicit tuning
for various model structures, and determine a controller
in the form of an ideal PID cascaded to a filter up to
the second order. In the quoted paper, rules are obtained
for five model structures by changing the structure of the
filter, interpreted in IMC terms. This results in controllers
of different structure themselves, as some parameters of
the general form (PID plus filter), for some models are
structurally zero.

The method we propose aims at obtaining the same (or
better) result with a uniform and completely standard
controller structure, i.e., a real PID (more precisely, a PID
with filtered derivative action). The closest work we could
find to our approach is that by Jin and Liu (2014), that
however does not encompass all the characteristics above,
and in particular does not directly shape the disturbance-
to-output frequency response magnitude the way we do. As
for the tracking/rejection tradeoff, here we concentrate on
the latter: if tracking is of interest as well, one can recover
it for example with method in Leva and Bascetta (2006),
as that technique is independent of how the feedback part
of the controller is designed.
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3. THE PROPOSED TUNING METHOD

The block diagram for the addressed control scheme is
shown in Figure 1, where P (s) and C(s) are respectively
the transfer functions of the process and the controller,
w(t) is the set point, y(t) the controlled variable, u(t) the
control signal, and d(t) a load disturbance to be rejected.

C(s) P(s)
w(t) + u(t) +

d(t)
+ y(t)

−

Figure 1. Control loop with load disturbance.

We consider as the controller to tune a real PID with
possibly complex zeroes, that we write as

C(s) =
bC0 + bC1s+ bC2s

2

aC1s+ aC2s2
. (1)

The tuning goal is to constrain the disturbance-to-output
transfer function Q(s) = Y (s)/D(s) to take the form

Qo(s) =
QN (s)

QD(s)
, QD(s) = (1 + sτQ)nQ , (2)

with QN (0) = 0 – as inherent to the structure of (1),
incidentally – to guarantee asymptotic disturbance rejec-
tion, τQ > 0 for stability, and nQ large enough to ensure
high-frequency roll-off (if not for a particular case briefly
discussed in Section 4.3).

In fact, nQ is dictated by the structure of the considered
process models, as there must be as tuning equations as
controller parameters—whence also the apparent redun-
dancy in the parametrisation of C(s), as will become clear
in Sections 4.1 through 4.5. On the contrary, τQ is a tun-
ing parameter (the only one) for the method, interpreted
as a time constant connected to the desired disturbance
step response convergence time—i.e., in some sense, pretty
much lie the desired closed-loop dominant time constant
in lambda or IMC tuning.

For completeness, in the (dominantly frequent) case of a
controller with real zeroes, the controller(1) is immediately
converted to the standard ISA PID form

C(s) = K

(
1 +

1

sTi
+

sTd
1 + sTd/N

)
(3)

by

K =
aC1bC1 − aC2bC0

a2C1

, Ti =
aC1bC1 − aC2bC0

aC1bC0
,

Td =
a2C2bC0 − aC1aC2bC1 + a2C1bC2

aC1(aC1bC1 − aC2bC0)
,

N =
a2C2bC0 − aC1aC2bC1 + a2C1bC2

aC2(aC1bC1 − aC2bC0)
.

(4)

Coming to the process model, we assume the general form

P (s) =
bP0 ∓ bP1s∓ bP2s

2

aP0 + aP1s+ aP2s2
(5)

with all parameters nonnegative; notice that we are as-
suming positive gain as well, but obviously this does not
impair generality.

The rationale behind the tuning approach we adopt, is
to prevent |Q(jω)| from exhibiting a plateau, thereby
minimising the width of the band where the disturbance
is rejected to the least extent (i.e., where |Q(jω)| is
near to its maximum), while allowing some control on
the maximum value of |Q(jω)| and of the high-frequency
control sensitivity.

The structure chosen for Qo(s), see (2), allows to easily
obtain an estimate on its∞-norm by taking the magnitude
of its frequency response at ω = 1/τQ, where the coinci-
dent poles are. For example, if Qo(s) has four poles (and
one zero in the origin, remember) then the only possible
mutual locations of zeroes and poles are shown in Figure 2,
and clearly the estimate just introduced is sensible; in the
figure, asymptotic Bode plots are sketched for simplicity.

ω

Z Z P4

ω

Z P4 Z

ω

P4 Z Z

Figure 2. Possible frequency positions of zeroes (Z) and
poles (P ) of Q(s) in the fourth order case.

As such, in the following we further denote the estimated
∞-norm of Qo(s) and the high-frequency value of the
controller (i.e., of the control sensitivity) magnitude, re-
spectively, as

Q̂max = max
ω
|Q(jω)|, C∞ = lim

ω→∞
|C(jω)|. (6)

where the hat sign in Q̂max underlines that this is an
estimate; the exact value depends on the detailed shape of
the frequency response, but the estimate is representative
in any case. The nice fact in all this reasoning is that
once the systems of equations that provide the controller
parameters are analytically solved, as done in the following
sections, both Qmax and C∞ – that respectively quantify
the disturbance rejection and the high-frequency control
activity – are functions of the tuning parameter τQ,
and can be used as the basis for a (possibly) automatic
selection of that parameter, although in this paper we do
not discuss the matter.

Summarising, the main advantage of our rationale is that
the disturbance-to-output frequency response is shaped in
a very direct and straightforward manner, and for several
process structures – like those addressed below – the
resulting tuning relationships are explicit.

4. APPLICATION TO RELEVANT PROCESS
STRUCTURES

The quoted paper by Horn et al. (1996) reports IMC
controllers for five process structures, optimised for “open
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loop dynamics slower then the [desired] closed-loop dy-
namics”, i.e., for what is sometimes called “strong feed-
back”, i.e., in turn, essentially for disturbance rejection.
With the notation of that reference, that we report here
for the reader’s convenience, the five structures treated are

PA(s) =
kp

τs+ 1
, PB(s) =

kp(−s+ z)

(τ1s+ 1)(τ2s+ 1)
,

PC(s) =
kp(−s+ z)

τs+ 1
, PD(s) =

kp
(τ1s+ 1)(τ2s+ 1)

,

PE(s) =
kp

s(τs+ 1)

(7)

4.1 Process A

In the form (5), process A in (7) reads

PA(s) =
bP0

1 + aP1s
, (8)

and with controller (1), this structurally yields a third-
order Q(s), i.e., nQ = 3. Setting QD(s) = (1 + sτQ)3 we
then get

aC1 = 1, aC2 =
τ3Q
aP1

, bC0 =
1

bP0
,

bC1 =
3τQ − 1

bP0
, bC2 =

aP1(3τ2Q − aP1)− τ3Q
aP1bP0

(9)

and

Q̂max =
bP0

√
τ4Q + a2P1

23/2aP1τQ
(10)

C∞ =

∣∣∣∣∣aP1(aP1 − 3τ2Q) + τ3Q
bP0τ3Q

∣∣∣∣∣ (11)

4.2 Process B

In the form (5), process B in (7) reads.

PB(s) =
bP0 − bP1s

1 + aP1s+ aP2s2
(12)

and in this case we have to set nq = 4, whence

aC1 =

aP2b
3
P1 + 4aP2bP0b

2
P1τQ + 6aP2b

2
P0bP1τ

2
Q

+ 4aP2b
3
P0τ

3
Q − (aP1b

3
P0 + b2P0bP1)τ4Q

aP2bP0b2P1 + aP1aP2b2P0bP1 + a2P2b
3
P0

,

aC2 =
τ4Q
aP2

, bC0 =
1

bP0
,

bC1 =

aP1aP2b
2
P1 + a2P2bP0bP1 + (4a2P2b

2
P0

+4aP1aP2bP0bP1)τQ − 6aP2bP0bP1τ
2
Q

− 4aP2b
2
P0τ

3
Q + (aP1b

2
P0 + bP0bP1)τ4Q

aP2bP0b2P1 + aP1aP2b2P0bP1 + a2P2b
3
P0

,

bC2 =

a2P2b
2
P1 + 4a2P2bP0bP1τQ + 6a2P2b

2
P0τ

2
Q

−(4aP1aP2b
2
P0 + 4aP2bP0bP1)τ3Q

+ ((a2P1 − aP2)b2P0 + aP1bP0bP1)τ4Q
aP2bP0b2P1 + aP1aP2b2P0bP1 + a2P2b

3
P0

(13)

while the expressions of Q̂max and C∞ are too long to be
reported here.

4.3 Process C

In the form (5), process C in (7) reads

PC(s) =
bP0 − bP1s

1 + aP1s
. (14)

We include this case for completeness, but we have to
notice that a first-order, non strictly proper process – and
to top, nonminimum-phase – seems a bit unrealistic indeed
in practice. Joined to a real PID, in addition, this gives
rise to an open loop transfer function with zero relative
degree, which has very well known drawbacks—and in the
end, adopting a closed-loop pole placement approach like
ours is probably among the best ways to handle such a
situation. In any case, we apply the technique to show
that formally it works. To do this we have to set nq = 3,
whence

aC1 = 1, aC2 = −

aP1b
2
P0bP1 + bP0b

2
P1 + b3P1

+ 3bP0b
2
P1τQ + 3b2P0bP1τ

2
Q + b3P0τ

3
Q

b2P0bP1 + aP1b3P0

,

bC0 = − 1

bP0
, bC1 = −bP1 + bP0(3τQ + 1)

b2P0

bC2 =

−a2P1b
2
P0 − aP1bP0bP1 − aP1b

2
P1

− 3aP1bP0bP1τQ − 3aP1b
2
P0τ

2
Q + b2P0τ

3
Q

b2P0bP1 + aP1b3P0
(15)

while Q̂max and C∞ are again too long to be shown. In
this work we do not further concentrate on this case, as
probably one should adopt a different controller structure,
or simply admit that every process eventually rolls off at
high frequency, and resort e.g. to case B.

4.4 Process D

In the form (5), process D in (7) reads

PD(s) =
bP0

1 + aP1s+ aP2s2
(16)

and we have to set nq = 4, whence

aC1 =
4aP2τ

3
Q − aP1τ

4
Q

a2P2

, aC2 =
τ4Q
aP2

, bC0 =
1

bP0
,

bC1 =
4a2P2τQ − 4aP2τ

3
Q + aP1τ

4
Q

a2P2bP0
,

bC2 =
6a2P2τ

2
Q − 4aP1aP2τ

3
Q + (a2P1 − aP2)τ4Q

a2P2bP0

(17)

and

Q̂max =
bP0τ

2
Q

√
(4aP2 − aP1τQ)2 + a2P2

4a2P2

, (18)

C∞ =

∣∣∣∣∣6a2P2 − 4aP1aP2τQ + (a2P1 − aP2)τ2Q
aP2bP0τ2Q

∣∣∣∣∣ . (19)
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4.5 Process E

In the form (5), process E in (7) reads

PEs(s) =
bP0

s+ aP2s2
(20)

and we have to set nq = 4, whence

aC1 =
4aP2τ

3
Q − τ4Q
a2P2

, aC2 =
τ4Q
aP2

, bC0 =
1

bP0
,

bC1 =
4τQ
bP0

, bC2 =
6a2P2τ

2
Q − 4aP2τ

3
Q + τ4Q

a2P2bP0

(21)

and

Q̂max =
bP0τ

2
Q

√
(4aP2 − τQ)2 + a2P2

4a2P2

, (22)

C∞ =

∣∣∣∣∣6a2P2 − 4aP2τQ + τ2Q
aP2bP0τ2Q

∣∣∣∣∣ . (23)

4.6 General remarks

A first thing to notice is that the five process structures
considered yield very different results as for the existence

of values for τQ that minimise Q̂max and/or C∞, as
summarised in table 1. The somewhere opposite effect
of the tuning parameter convinces of the opportunity of
structure-specific tuning if high rejection performance is
required.

Proc. Q̂max C∞
A min. for τQ =

√
aP1 min. for τQ =

√
aP1

B no analytical solution ∃ minimising τQ
(complex expression)

C no analytical solution strictly incr. with τQ
D strictly incr. with τQ strictly decr. with τQ
E strictly incr. with τQ min. for τQ = 3aP2

Table 1. Summary of the effect of parameter

τQ on Q̂max and C∞.

A second notable remark is that, although critical cancella-
tions never happen (we omitted computations for brevity),
in the case of nonminimum-phase processes the PID can
turn out to be unstable, i.e., to have its second pole in
the right half plane. In principle this can make sense as
high rejection performance is required, but further study is
required on this aspect, especially to properly quantify the
closed-loop stability robustness, that we cannot undertake
in this paper.

5. SIMULATION RESULTS

In this section we present some samples of an extensive
simulation campaign, that we conducted to assess the
correct behaviour of the proposed technique, and to verify
that the it actually exhibits the expected strengths.

For compactness we introduce a normalised complex vari-
able σ = sτ , where τ is the only or the largest time
constant of the pole(s) of processes A–E not in the
origin. Defining the normalised processes pA−E(σ) as
PA−E(σ/τ)/µ we get

pA(σ) =
1

1 + σ
, pB(σ) =

1− σθ
(1 + σ)(1 + σψ)

,

pC(σ) =
1− σθ
1 + σ

, pD(σ) =
1

(1 + σ)(1 + σψ)
,

pE(σ) =
1

σ(1 + σ)
.

(24)

where 0 < ψ < 1 since the “other” pole has to be faster,
while in principle θ (positive) could be arbitrarily large.
Rigorously the numerator of pE should be τ , incidentally,
but in this case it just plays the role of a scale factor, as
the process is type 1, and therefore can be omitted in the
normalised transfer function.

5.1 Test 1

10−1 100 101 102
−80

−60

−40

−20

0

20

Normalised frequency

d
B

pA, τq = 0.2 pA, τq = 0.4 pA, τq = 0.6 pA, τq = 0.8

pE , τq = 0.2 pE , τq = 0.4 pE , τq = 0.6 pE , τq = 0.8

Figure 3. Test 1 – avoiding the magnitude plateau in the
frequency response or |Q(s)|.

First, we show that the proposed rule actually avoids the
magnitude plateau in the frequency response or |Q(s)|,
while τq controls the position of the frequency band where
the disturbance is least rejected.

Figure 3 shows an example with processes A and E; the
magnitude of the frequency response of Q(s) is plotted. It
is interesting to note the opposite effect of τq, depending
on the processes’ structure. Also, peak values above 0dB
are not an issue: this example only means to show the
absence of the plateau, while of course when doing a real
tuning values of τq keeping the peak under 0dB will be
selected.

5.2 Test 2

We now show an example of comparison between our
proposal and the reference by Horn et al. (1996). The
example uses two processes in class B, namely

pB1(σ) =
1− 2σ

(1 + σ)(1 + 0.4σ)
,

pB2(σ) =
1− 0.4σ

(1 + σ)(1 + 0.9σ)
,

(25)

of which the first has a remarkably undershooting step re-
sponse and a second pole at significantly higher frequency
wit respect to the dominant one, while the second has two
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2
,τ
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=
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Figure 4. Test 2 – comparing load disturbance step re-
sponses.

almost coincident poles and a less evident overshoot (in
some sense, thus, the two processes are “quite extreme” in
the class).

Figure 4 reports the load disturbance step responses of (4)
with a “low” and a “high” value of the parameter control-
ling the closed-loop band, i.e., λ in the work by Horn et al.
(1996) and τq in our proposal.

As can be seen, both parameters act in the respective
technique in the desired manner. On one hand this proves
that the analogy in their interpretation is correct, but
on the other hand, as expected, there is some advantage
in governing the disturbance-to-output transfer function
directly. For example, with pB1 the maximum error might
slightly increase, the ISE is comparable but the settling is
definitely shorter, while with pB2 there is an apparently
less oscillatory behaviour.

5.3 Test 3

In this test we again compare our technique to the quoted
reference, but this time in terms of the load disturbance
step response ISE, defined as

ISE =

∞∫
0

e(t)2dt, (26)

where e(t) = w(t) − y(t) is the error. More precisely, we
compare the relative ISE, i.e., the quantity

RISE =
ISEprop

ISEhorn
, (27)

ISEprop and ISEhorn being the ISE computed with the
proposed and the reference controller, respectively.

0.1

0.5

1

0.4
0.6

0.8
1

0

0.5

1

ψτq

RISE

Figure 5. Test 3 – comparing the load disturbance step
response ISE.

Figure 5 shows the said integral index for process class D.
The green surface is the relative ISE, the red line on the
surface is the unity level, its projection onto the (ψ, τq)
plane is shown as well. As can be seen, there is a wide
region in the (ψ, τq) plane, where the proposed tuning
approach yields an advantage.

6. AN EXPERIMENTAL TEST

In this section we present an experiment in which the
proposed method is applied to a laboratory apparatus, and
compared to Horn et al. (1996) plus two other PID tuning
techniques well known to be suitable for disturbance
rejection, namely the AMIGO (Åström and Hägglund,
2004) and the SIMC (Skogestad and Grimholt, 2012).
For completeness we notice that AMIGO tunes an ideal
PID, that we made proper with N = 20 as suggested in
the quoted reference. As for the SIMC, given the first-
order process, we used the PI rule, with the additional
advantage of achieving a zero relative degree controller
without choosing the second pole arbitrarily. Finally, we
notice that for process class A, the most appropriate for
the addressed dynamics, the controller by Horn et al.
reduces to a PI. All in all, with the inevitable shortcomings
of any experimental setup, we deem this a fair enough
comparison.

The used apparatus, described in Leva (2003), is a tem-
perature control system composed of a small metal plate
electrically heated by a transistor. The command to that
transistor is the control signal, while the plate temperature
is the controlled variable. A second transistor is connected
to heat the plate, thereby apparently providing a load
disturbance. Since the controlled dynamics is dominantly
first-order, all the three methods just mentioned fit. The
tuning results are in table 2.

Figure 6 shows the response of the controlled plate temper-
ature Tp (top plot) and of the [0, 100] command uh to the
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Method K Ti Td N

Proposed 88 15 0.35 0.03
Horn et al. 41 30 0 n/a
AMIGO 31 30 3.5 20
SIMC 33.5 56 0 n/a

Table 2. Controller parameters in the experi-
mental test.

26.5

27

27.5

28

T
p
[◦
C
]

Set point SIMC AMIGO Horn et al. Proposed

0 100 200 300 400 500 600
0

20

40

60

80

100

time [s]

u
h
[0
,1

0
0
]

Figure 6. Laboratory experiment – controlled variable and
control signal response to a 40% load disturbance
step.

heating transistor (bottom plot) to a 40% load disturbance
impressed via the second transistor.

The proposed technique yields the best disturbance re-
jection; there is of course a cost in terms of of a more
nervous control and a higher sensitivity to measurement
noise, but both phenomena appear up to a reasonable
extent. The technique can therefore supposed to be also
viable in practical process control applications.

7. CONCLUSIONS AND FUTURE WORK

We presented a technique to analytically tune a real
PID in a structure-specific manner as for the process
dynamics. The underlying approach is based on assigning
the closed-loop poles so as to shape the disturbance-
to-output frequency response to exhibit no plateau. The
technique has a single parameter, interpretable in a way
similar to λ in IMC-based rules, and for which “optimal”
values can be sought (although this was not discussed here
in depth).

Future work will proceed along three main directions. The
first one is to apply the same rationale to other process
structures—including delay-dominated ones. The second
consists of posing and solving optimisation problems (pos-
sibly not analytically, however) to automatically select the
tuning parameter. The third is to integrate the proposed
method – that refers to the feedback part of a PID – into
the synthesis of two-degree-of-freedom controllers. As a
further possibility, then, different structures for the desired

disturbance-to-output dynamics can be considered, and
analogously, the application of the same idea to other
controller structures can be studied.
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