
PID-based controls in computing systems:
a brief survey and some research directions

Alberto Leva

Dipartimento di Elettronica e Informazione e Bioingegneria,
Politecnico di Milano, Italy (e-mail: alberto.leva@polimi.it).

Abstract Applying controls to manage and optimise the behaviour of computers and networks
is an important research field. In recent years, controllers have been gaining a role not only as
add-ons to improve the efficiency of already functioning systems, but also as core components of
those system themselves, and of their design. This paper provides a brief but reasoned review on
the matter, evidencing the preminent role of PID-centred control solutions, and outlines some
open issues for future research directions.

Keywords: Computing systems control; PID-based controls; Control-based system design.

1. INTRODUCTION

The idea of using control to improve the operation of
computing system dates back to more than 15 years
ago (Abdelzaher et al., 2003; Hellerstein et al., 2004).
At that time, the main goal was to automatically (in
computer jargon, dynamically) adapt some parameters of
a system – for example, priorities in a scheduler – so as
to improve the system operation. Used like this, control
theory is a means to formalise “improvements” (e.g., in
terms of cost functions to minimise) and to formally assess
solutions—two important advantages with respect to the
main alternative, i.e., mere heuristics. As such, the interest
for “computing systems control” is high in both the
academic and the information technology communities.

More recently, the idea was proposed to bring control much
deeper inside computers and networks—i.e., for example,
to design core components of operating systems entirely
as controllers (Leva et al., 2013). This research has given
rise to many applications as well, and despite it is still in
its infancy, the efficiency improvement it appears to yield
are already encountering technological interest.

It is impossible to provide here a complete description of
so complex a scenario. On the contrary, however, it is quite
easy to notice that PI/PID control, and other very similar
techniques, play an important role in this story. Based on a
decade of experience in the field, it is therefore interesting
in the first place to ask oneself why, and then to reason on
possible research directions, in the field of PID control and
its vicinity, triggered and guided by its use in the context
of computing systems. This is the purpose of this paper.

2. MINIMAL LITERATURE REVIEW

The outset of “computing systems control” is very well
described in the paper that Diao et al. (2005) wrote as a
follow-up to an IBM research report (RC23646, W0506-
124, 29 June 2005). According to the authors, research
needs to explore “the extent to which control theory
can provide an architectural and analytic foundation for

building self-managing systems” and to exploit the “cor-
respondence between the elements of autonomic systems
and those in control systems”, as “control theory provides
a rich set of methodologies for building automated self-
diagnosis and self-repair systems with properties such as
stability, short settling times, and accurate regulation”.

A similar attitude is observed in Part I of the book
by Hellerstein et al. (2004). To mention just a very few
of the numerous works originated by those pioneering
ideas, Lu et al. (2002) added a control layer to the
EDF (Earliest Deadline First) and the rate monotonic
scheduling algorithms, Xu et al. (2006) employed input-
output models for resource allocation in data centres,
Wang et al. (2007) proposed a control scheme for real-time
systems utilisation, Kihl et al. (2008) analysed admission
control in web servers by using a dynamic model, and so
forth; the survey by Huebscher and McCann (2008) gives
a comprehensive view of research in that period.

More recently, two additional trends emerged, and are
gaining relevance. First, works like (Janert, 2013) stress
the application-related usefulness of “control in comput-
ers” stronger than before. Second, the research focus is
widening toward control-based computing systems de-
sign (Leva et al., 2013) as a means to avoid the problems of
previous approaches, where first the computing system is
designed to be completely functional, and only afterwards
does control move in to “optimise” – whatever this means –
its operation. Bringing control into the design of systems
is a very articulated task, however, requiring to address
multiple objectives. It is often necessary to instrument the
system to allow closing the required loops (Brun et al.,
2009; Patikirikorala et al., 2012), to design and install
specific control-based components (Hoffmann et al., 2013;
Arcelli et al., 2015), and sometimes to completely re-design
(in a control-centric manner) parts that otherwise would
be too critical for the desired results (Terraneo et al., 2014;
Al-Areqi et al., 2015).

Summarising, a research topic of great importance is
nowadays not only to control computing systems, but also

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

FrBT4.1

© 2018 International Federation of Automatic Control 805



to make their design control-aware, and set up controls
accordingly. In fact, in computing systems, most of the
objects to be controlled are homogeneous to controllers,
i.e., they are software themselves; and in such an arena,
quite intuitively, the idea of co-design should find an
application domain of election.

Given the breadth of the domain, as sketched out above,
this research is expected to last for quite a long time.
Nonetheless, and somehow despite the variety of encoun-
tered cases, there are conceptually grounded reasons to
envisage a relevant role for PI- and PID-based controls.
As a consequence, there are problem-specific control struc-
tures to build and assess, domain-specific stability and per-
formance problems to study, and implementation-related
facts – particularly, but not exclusively, measurement and
actuation ones – to address in a systematic manner, so as
to establish best practices and system design guidelines.

Viewed in general, the problem is to realise a cultural
and engineering convergence for the computers and the
control communities, but such a subject apparently strays
form the scope of this paper. Limiting the scope to the
present and expected role of PI/PID control, however,
some interesting considerations can be made, and this is
the purpose of the following sections.

3. PI(D) CONTROL IN COMPUTING SYSTEMS

When presenting his keynote paper, Hägglund (2012)
suggested that in modern systems, PID blocks relate
themselves to the overall control application like ants to
their colony. This suggestive view can be re-formulated,
for the scope of this work, by saying that such blocks act
locally and near to the physics of the controlled system,
while the effects of their operation becomes evident, and
is evaluated, at higher levels in the system.

The reader may object that this is true in any control
hierarchy, hence not specific to computing systems. True
in principle, but with some relevant peculiarities. For our
purposes, we just mention and briefly discuss two.

First, in any other domain but computing, there is a
physically defined level below which neither measurements
can be feasibly taken, nor actions are possible. To explain
with a deliberately extreme example, a bit brutalised for
brevity, temperature is physically governed by molecular
motion, but one simply cannot think of measuring and
actuating at that scale. In computing systems, the same is
not so true. For example, SLAs (Service level Agreements)
for a server are invariantly established on an average
basis, such as a waiting time below 100ms for 99% of the
submitted requests; however, not only one can think of
acting at the level of “molecules” – sticking to the same
case, the individual requests – but in several situations,
this is exactly what one must do.

Second, outside the computing domain, lower hierarchy
levels correspond to less arbitrary choices concerning mea-
surement and actuation. For example, in a “peripheral”
pressure loop the choice of sensor and actuator is mostly a
matter of available/applicable/preferable technology, and
there are well established guidelines to address it; on the
contrary, “central” controls may have to do with “prod-
uct quality” or other management-oriented performance

indicators, which need computing from measurements, and
that can be defined and obtained in conceptually different
manners. Here too, in computing systems the panorama
is often not equally clear. For example, measuring the
throughput of a server is heavily influenced by the ref-
erence time interval adopted, and performance indices like
the residence time of a queue need discussing right from
their definition and interpretation if – as is frequently the
case – input and output rates vary continuously, so that
there is simply no such thing as a steady state.

Besides additional difficulties with respect to other do-
mains, fortunately, the computing one also brings some
good news. The main one, on which in this work we
concentrate, is that the deeper one digs into the system,
the simpler the dynamic equations describing the observed
phenomena normally tend to become. Indeed, remarkable
benefits come from endowing systems with a hierarchi-
cally “low” layer of PI- or PID-based controls targeted
at mitigating the effects of exogenous disturbances on
systems with quite simple dynamics. The following section
provides some examples of this idea, showing that several
heterogeneous problems, when viewed the way sketched
above, reveal a uniform structure, and that PI- or PID-
based control structures are very well suited to address
them.

4. ONE MODEL FOR MANY CONTROLS

Consider the system described in the discrete time by

y(k) = y(k − 1) + µ (g(k − 1)u(k − 1) + d(k − 1)) (1)

where u(k) is the control input, y(k) the controlled vari-
able, g(k) a multiplicative disturbance (or equivalently, a
time-varying gain), and d(k) an additive load one. Since
g(k) is frequently interpreted as a variable “efficiency”, as
illustrated below, we assume

0 < gmin ≤ g(k) ≤ 1 ∀k. (2)

u(k)

g(k) d(k)

++ µ
z−1 y(k)

Figure 1. Delayed integrator with varying gain and addi-
tive load disturbance.

The system (1), shown as block diagram in Figure 1,
fits a quite surprising variety of dynamics seen by PI(D)
controllers as per the scenario described in Section 3. Let
us see some examples.

(1) In uniprocessor preemptive scheduling the processor
time received by a task at the time of the k-th
intervention of the scheduler (y(k)) equals that before
the said intervention (y(k−1)) plus the time allotted
to the task at that intervention (u(k − 1)) plus the
effect of any phenomenon (d(k − 1)) causing the
actually used time to differ from the allotted one; in
this case g and µ are structurally unitary.

(2) In batch data processing the amount of data processed
by a task at the time of the k-th intervention of the
resource allocator (y(k)) equals that before the said
intervention (y(k − 1)) plus the data nominally pro-
cessed in the time between the two interventions by

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

806



the allotted computational resources. These resources
are u(k− 1), and the nominal resource-to-processing-
speed gain µ is multiplied by the time-varying “effi-
ciency” g(k − 1), that accounts, among other effects,
for the fact that different data may stress the allot-
ted resources in an a priori unpredictably different
manner; in this case d is structurally zero.

(3) In queue-based services the length of a queue (y(k))
at the time of the k-th intervention of the manager
allotting computational power to the corresponding
server equals that before the said intervention – i.e.,
y(k − 1)) – plus the requests arrived in between the
two interventions (d(k − 1)) minus the requests pro-
cessed in the same time span, i.e., the computational
power allotted at the beginning of the span (u(k−1))
multiplied by a nominal gain µ, that represents the
maximum server speed, and by the time-varying (or
equivalently, data-dependent) efficiency g(k − 1).

(4) In networks with multiple clocks and a time master
the time error between each clock and the master at
the k-th synchronisation event equals the same error
after the previous synchronisation event (y(k − 1))
plus the integral d(k) of the slave-to-master clock
skew (inverse of the normalised frequency difference)
over the time span between the two events minus a
correction u(k − 1) computed at the previous event;
in this case g and µ are structurally unitary.

As long as the control action is computed periodically –
a hypothesis that can sometimes be relaxed but to which
in this paper for simplicity we stick – the examples above
should convince the reader that the equation “work accom-
plished now equals work accomplished at the last step plus
allotted resource times efficiency plus additive effects”, or
convenient re-phrasings of it, indeed fit a vast number
of physically heterogeneous applications. Adopting this
paradigm, the differences among those applications reside
in the presence or absence of the multiplicative and ad-
ditive disturbance, in the way those disturbances can be
characterised, and in the aspect of the reference signal
to be tracked by the controlled variable. In any case,
the aptitude of PI(D)-based controllers should be quite
apparent.

To exemplify, when subjecting (1), that in state space form
reads{

xP (k) = xP (k − 1) + µ (g(k − 1)u(k − 1) + d(k − 1))
y(k) = xP (k)

(3)
to PI control, that for convenience we write as{

xC(k) = xC(k − 1) + bCe(k − 1)
u(k) = xC(k) + dCe(k)

(4)

where e(k) = w(k) − y(k) is the error, w(k) being the
reference signal, we get a closed-loop dynamics described
by the LPV system with state x(k) = [xP (k) xC(k)]

′
and

dynamic matrix

A(k) =

[
1− µg(k)dC µg(k)
−bC 1

]
(5)

In force of Theorem 1 by Akar and Narendra (2001),
the origin of the state space is a globally asymptotically
stable equilibrium for the closed-loop system – in the linear
context wehere stability analysis is most typically carried

out – iff the matrix pencils

H(α,A1, A2) = (0.5I −G(α,A1, A2))−1

(0.5I +G(α,A1, A2)),
G(α,A1, A2) = αP + (1− α)Q

(6)

where α ∈ [0, 1], P = 0.5I − (I + A1)−1, Q = 0.5I − (I +
A2)−1, and

A1 =

[
1− µgmindC µgmin

−bC 1

]
, A2 =

[
1− µdC µ
−bC 1

]
(7)

are Schur. In turn, by applying the conditions set forth
in (Akar and Narendra, 2001, Section 4) it can be proven –
computations are long and off-topic here, thus omitted for
space limitations – that if gmin is taken arbitrarily close to
zero, which is reasonable and even conservative, then the
pencils (6) are Schur iff so are A1 and A2.

Hence, with a simple model covering a variety of control
cases, stability (in the sense above) is straightforward
to assess also in the presence of both multiplicative and
additive disturbances. Also, given the simplicity of the
stability condition, virtually any PI tuning rule for inte-
grating processes can be safely used, and this is why in
the following we do not focus on tuning to make room for
more interesting domain-specific considerations.

We now illustrate the statement that “a simple model fits
a variety of cases” a bit more in detail. The scheduling
case, giving rise to a PI-based cascade structure, has
already been treated in (Maggio et al., 2012), to which for
brevity the reader is referred as the problem description
therein – albeit at that time preliminary – fits very well
the statements made here. As such, we concentrate on
the other cases. Also, to answer in advance the objection
– frequently encountered in the computer community –
that “our models are too simple to represent reality well
enough to carry out any design”, we notice that all the
controls here briefly presented were tested on high-fidelity
simulators, and quite often also on the real systems,
yielding results in very good accordance with the model
forecasts. The provided references contain details.

4.1 Batch data processing

Processing a batch of data with unknown characteristics
within a given deadline is an elementary operation nec-
essary for the correct operation of many applications, for
example “big data” ones. The challenge is to automat-
ically absorb data-originated processing rate variability
by allotting computational power, while avoiding over-
provisioning to not unduly make other applications fail.

Here the set point can be viewed as a ramp (the desired
completion), while the disturbance takes the form of small
fluctuations – the high data rate tends to average out
record-to-record variability – more or less of Brownian
type, superimposed to large, abrupt but sporadic varia-
tions. These in turn occur at two main time scales: one
corresponds to the clock frequency modifications produced
by the power/performance governor (say every 100ms or
so, a very long time with respect to processing the typical
record), the other – even longer – is related to exogenous
events like the failure of one or more processors.

Accepting short-term disturbances to partially pass on
to the controlled variable, which is reasonable given the

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

807



inherent smoothing mechanism just quoted, the loop has
to contain two integrators so as to keep the desired
processing rate. PI control is therefore suitable.

At present, after experimenting with (real) cloud applica-
tions where resources can be rapidly allotted via the use
of Docker containers, work is in progress to extend a big
data framework (Spark) with the control functionalities
just described.

4.2 Queue-based services

If the length ` of a queue and the inlet rate (requests
over time) ri are constant, then the residence (or waiting)
time for a request in the queue is `/ri, constant as well.
If – as in any real-world case – the inlet request rate
varies, things become questionable. However, as discussed
in Arcelli et al. (2016), queuing networks do benefit from
having each server endowed with a local controller capable
of maintaining the queue length at a desired level. The
queue length set point may come for example from a
higher-level response time controller. The advantage with
respect to just processing requests as they arrive, is that
the usage of computational resources, with PI loops in
place at servers, is significantly less bursty and random,
which simplifies the allocation problem at the level of the
overall network.

0

0.2

0.4

0.6

t r

0

500

1,000

1,500

r i
n

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

time [s]

u

Figure 2. Queuing node control – simulation experiment.

Figure 2 reports a simulation experiment to give an idea
of the achievable control quality. The top plot shows the
response time, closely following the reference unless when
the variable input rate (centre) is so high to cause the
server command u (bottom, normalised in the [0,1] range)
to be saturated. Note however the prompt recovery, as
well as the rapid absorption of a 40% server efficiency
drop between 20 and 30 seconds (barely visible on the
controlled variable, well evident on the control signal).
For full details on this problem and the relative control
synthesis, the reader can refer to Arcelli et al. (2016).

4.3 Networks with multiple clocks

When synchronising a slave clock to a master that trans-
mits a “sync” packet with fixed period T , the additive
disturbance d is the accumulated slave clock skew over
T , while the control signal u is naturally chosen to be an

additive correction to the slave time, attempting to match
T + u in that time to T in the master one (see Leva et al.
(2016) for a complete discussion). Hence, denoting by e
the error, in this case (1) reduces to

e(k) = e(k − 1) + u(k − 1) + d(k − 1), (8)

i.e., in transfer function form,

E(z) = P (z) (U(z) +D(z)) , P (z) =
1

z − 1
. (9)

In this case, the main source of disturbance is the tem-
perature of the slave, that typically follows exponential
transients with durations such that, over some synchro-
nisation period, d significantly resembles a ramp. A PI is
therefore not enough. To effectively reject the expected
disturbance, it is convenient to prescribe the disturbance-
to-output transfer function to have two unity zeroes, thus
obtaining the controller C(z) from

P (z)

1 + C(z)P (z)
=

(z − 1)2

(z − α)3
(10)

where α is a design parameter to trade error convergence
speed versus high-frequency control sensitivity. This yields

C(z) =
3(1− α)z2 − 3(1− α2)z + 1− α3

(z − 1)2
, (11)

that can be interpreted as an ideal PID plus an additional
integrator, or the cascade of two PIs. In this case the sys-
tem is time-invariant, however, so that ensuring stability
is a no-problem.

The so obtained controller significantly outperforms state
of the art alternatives like the Flooding Time Synchronisa-
tion Protocol (Maróti et al., 2004) or the Feedback Based
Synchronisation scheme (Chen et al., 2010), as shown in
the experiment of Figure 3, where three wireless nodes
carrying the three techniques (the proposed one is named
FLOPSYNC-2 for Feedback-based LOw-Power SYNChro-
nisation version 2) were subjected to a shade-sunlight
transition causing a 20◦C temperature variation. Note the
ramp-like aspect of the temperature disturbance over say
3–4 synchronisation periods: FTSP and FBS make the
error settle when temperature settles, while FLOPSYNC-
2, thanks to the disturbance-.tailored controller, acts in
advance. For more details on the control synthesis in
FLOPSYNC-2, the reader is referred to Leva et al. (2016).

5. GENERAL REMARKS AND OPEN PROBLEMS

We have briefly reviewed a few control problems (in about
ten years of research others were encountered) that are
relevant for the management and the design of computing
systems. We can now make some general remarks.

First, all these problems can be viewed as the control
of (dominantly) first-order processes – in our review we
further limited the scope to pure delayed integrators –
subjected to multiplicative and additive disturbances. This
problem formulation was achieved by deliberately aiming
at “modelling the core phenomenon” behind he behaviour
of the system; quite frequently, adopting his approach,
simple dynamic balance equations prove to be enough to
describe the system—although at quite low a level with
respect to the one where quality of service is typically
judged.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

808



Time [min]

S
y
n
c
e
rr
o
r
[µ
s]

Te
m
p
[°
C
]

Figure 3. Synchronisation experiment: the top plot shows the error with FLOPSYNC-2 (black) versus FTSP (red) and
FBS (blue) for the temperature transient in the bottom plot; the synchronisation period is 1min.

Then, as a consequence of this modelling attitude, un-
certainty can very often be confined to inputs for the
controlled system. In the case of linear models this is
extremely desirable, because additive disturbances cannot
influence stability. Also, given the low orders encountered,
multiplicative ones can very often be treated straight-
forwardly. In such a scenario, PI- or PID-based controls
prove very successful, either to tackle the problem entirely
(as in uniprocessor scheduling) or as “peripheral” controls
(like in queuing systems) to enforce local determinism and
allow higher-level decision mechanisms – in the sense of
hierarchical control – to reason in the face of a mitigated
process variability.

Finally, the achieved control quality is in general satis-
factory, and this is particularly good news because in
computing systems more articulated – e.g., predictive –
approaches easily fail, owing to the scarce possibilities of
forecasting disturbances at the required time scale (think
of guessing in advance when an unknown software will
request resources, for example).

Besides these remarks, there is another point in favour of
simple (e.g., PI) controls, that for unknown reasons – at
least, to the best of the author’s knowledge – is hardly ever
mentioned in the literature. When somebody sells control
applications, the processor time used to compute the
control signals, is value. When somebody sells any other
services, the processor time spent executing controllers to
manage those services, is stolen to the service themselves.
It is true that with modern computers, much more complex
controls than PIs can be set up for problems like those
shown above, but to justify the additional overhead, even
modest, the control quality improvement has to be really
significant. Indeed, it is quite likely that PI/PID-based
control still has a bright future in this field.

Coming now to a couple of relevant open problems, al-
though many schemes reduce to sets of single-loop SISO
controllers, there are cases in which one needs to address
a multivariable, interacting system. The peculiarity of
the computing domain, in this respect, is that the great
majority of couplings are generated by shared resources.
In other words, there are several cases (scheduling is one)
where control variables are not individually constrained,
only their sum (or in general, a linear convex combination)
is. Of course a conceptually viable way to address such
a case is constrained MPC, but in the light of the effi-
ciency considerations above, antiwindup-based solutions
are preferable. There is thus the need for devising ad hoc

solutions, possibly along “directional” approaches like that
proposed by Horla (2009).

Moreover, any feedback control needs a sensor and an
actuator, but in computing systems it may be difficult to
measure the controlled variable, and even more to exert
the control action, as sometimes these operations have to
rely on operating system modules that were not conceived
for control, and as a consequence – for example – tey do
not provide the required precision, or the required timing
guarantees, or any combination thereof.

Research is nowadays addressing these problems, for exam-
ple “instrumenting” applications (Hoffmann et al., 2010).
However this activity is mainly carried out in the com-
puter science community, thereby not always paying due
attention to facts (e.g., timing) that are conversely very
important in system-theoretical terms, while the control
community frequently just takes the available measure-
ment and actuation machinery as a matter of fact. No
criticism, but more convergence is needed.

6. CONCLUSIONS AND FUTURE WORK

We have reviewed some research results on control and
control-based design of computing systems. The conclusion
drawn, and the main point of this “reasoned retrospect”
paper, is that not only PI- and PID-based controls play
a relevant role, but in several heterogeneous applications
they face basically the same dynamics. Differences between
the said applications reside in the aspect of the reference
signal and of disturbances. As such, one can easily envisage
at least two main research directions for future work.

First, on the methodological side, there is in some cases the
need for domain-specific tuning procedures – not necessary
rules, beware – to fit the feasible experiments and to
not disturb the system operation when a controller (re-
)tuning is in progress. This is because, as said before,
well assessed tuning rules normally do a perfect job, but
in a system subject to highly variable requests on the
part of many actors (users, processes, and so forth) it
may be problematic to apply stimuli – think of steps
or relay feedback – that are conversely the standard e.g.
in process control. Addressing this aspect, together with
a qualification for the aplicability limits of the simple
models here discussed – would open the way to many
other applications other than those shown herein, where
the model is either parameter-free or a “worst case”
parametrisation is quite easily obtained.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

809



On the technological side, given the uniformity here ev-
idenced, it would be desirable to have standard PI- or
PID-based components to include in operating systems,
and possibly in firmware. Control could then rely on them,
to the advantage of compactness, performance, and main-
tainability. However, given the heterogeneous nature of
systems to date, this is not so easy to implement.

Finally, as noticed above, present systems frequently ex-
hibit highly layered software structures, making it difficult
to reach sensing and actuating points. As such, if on
one hand it is necessary to make control-based systems
manageable by the standard administrator, who has no
(and needs not have) a control culture, on the other
hand there is an undoubted need to make systems more
control-friendly. In the opinion of the author this is a
great challenge, and addressing it successfully will lead to
correspondingly greater performance in the future.

REFERENCES

Abdelzaher, T., Stankovic, J., Lu, C., Zhang, R., and Lu,
Y. (2003). Feedback performance control in software
services. IEEE Control Systems Magazine, 23(3), 74–
90.

Akar, M. and Narendra, K. (2001). On the existence of
a common quadratic Lyapunov function for two stable
second order LTI discrete-time systems. In Proc. 2001
American Control Conference, 2572–2577. Arlington,
VA, USA.

Al-Areqi, S., Görges, D., and Liu, S. (2015). Event-
based networked control and scheduling codesign with
guaranteed performance. Automatica, 57(7), 128–134.

Arcelli, D., Cortellessa, V., Filieri, A., and Leva, A.
(2015). Control theory for model-based performance-
driven software adaptation. In Proc. 11th International
ACM SIGSOFT Conference on Quality of Software Ar-
chitectures, 11–20. New York, NY, USA.

Arcelli, D., Cortellessa, V., and Leva, A. (2016). A library
of modeling components for adaptive queuing networks.
In Proc. 13th European Workshop on Performance En-
gineering, 204–219. Chios.

Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese,
H., Kienle, H., Litoiu, M., Müller, H., Pezzè, M., and
Shaw, M. (2009). Engineering self-adaptive systems
through feedback loops. In B. Cheng, R. de Lemos,
H. Giese, P. Inverardi, and J. Magee (eds.), Software
engineering for self-adaptive systems, 48–70. Springer,
Berlin, Germany.

Chen, J., Yu, Q., Zhang, Y., Chen, H., and Sun, Y. (2010).
Feedback-based clock synchronization in wireless sensor
networks: A control theoretic approach. IEEE Transac-
tions on Vehicular Technology, 59(6), 2963–2973.

Diao, Y., Hellerstein, J., Parekh, S., Griffith, R., Kaiser,
G., and Phung, D. (2005). A control theory foundation
for self-managing computing systems. IEEE journal on
selected areas in communications, 23(12), 2213–2222.

Hägglund, T. (2012). Signal filtering in PID control.
In Proc. 2nd IFAC Conference on Advances in PID
Control, 1–10. Brescia, Italy.

Hellerstein, J., Diao, Y., Parekh, S., and Tilbury, D.
(2004). Feedback control of computing systems. John
Wiley & Sons, New York, NY, USA.

Hoffmann, H., Eastep, J., Santambrogio, M., Miller, J.,
and Agarwal, A. (2010). Application heartbeats: a

generic interface for specifying program performance
and goals in autonomous computing environments. In
Proc. 7th international conference on Autonomic com-
puting, 79–88. Washington, DC, USA.

Hoffmann, H., Maggio, M., Santambrogio, M., Leva, A.,
and Agarwal, A. (2013). A generalized software frame-
work for accurate and efficient management of perfor-
mance goals. In Proc. 2013 International Conference
on Embedded Software, Article No. 6658597. Montréal,
Canada.

Horla, D. (2009). On directional change and anti-windup
compensation in multivariable control systems. Inter-
national Journal of Applied Mathematics and Computer
Science, 19(2), 281–289.

Huebscher, M. and McCann, J. (2008). A survey of au-
tonomic computing – degrees, models, and applications.
ACM Computing Surveys, 40(3), 7:1–7:28.

Janert, P. (2013). Feedback control for computer systems.
O’Reilly Media, Sebastopol, CA, USA.

Kihl, M., Robertsson, A., Andersson, A., and Wittenmark,
B. (2008). Control-theoretic analysis of admission con-
trol mechanisms for web server systems. World Wide
Web, 11(1), 93–116.

Leva, A., Maggio, M., Papadopoulos, A., and Terraneo,
F. (2013). Control-based operating system design. IET,
London, UK.

Leva, A., Terraneo, F., Rinaldi, L., Papadopoulos, A., and
Maggio, M. (2016). High-precision low-power wireless
nodes synchronization via decentralized control. IEEE
Transactions on Control Systems Technology, 24(4),
1279–1293.

Lu, C., Stankovic, J., Son, S., and Tao, G. (2002). Feed-
back control real-time scheduling: Framework, model-
ing, and algorithms. Real-Time Systems, 23, 85–126.

Maggio, M., Terraneo, F., Papadopoulos, A., and Leva, A.
(2012). A PI-based control structure as an operating
system scheduler. In Proc. 2nd IFAC Conference on
Advances in PID Control, 329–334. Brescia, Italy.

Maróti, M., Kusy, B., Simon, G., and Lédeczi, A. (2004).
The flooding time synchronization protocol. In Proc.
2nd International Conference on Embedded Networked
Sensor Systems, 39–49. Baltimore, MD, USA.

Patikirikorala, T., Colman, A., Han, J., and Wang, L.
(2012). A systematic survey on the design of self-
adaptive software systems using control engineering
approaches. In Proc. 2012 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
33–42. Zürich, Switzerland.

Terraneo, F., Rinaldi, L., Maggio, M., Papadopoulos, A.,
and Leva, A. (2014). FLOPSYNC-2: sub-microsecond,
sub-µa clock synchronisation for wireless sensor net-
works. In Proc. IEEE Real-Time Systems Symposium
RTSS 2014, 11–20. Roma, Italy.

Wang, X., Jia, D., Lu, C., and Koutsoukos, X. (2007).
Deucon: Decentralized end-to-end utilization control for
distributed real-time systems. IEEE Transactions on
Parallel and Distributed Systems, 18(7), 996–1009.

Xu, W., Zhu, X., Singhal, S., and Wang, Z. (2006). Pre-
dictive control for dynamic resource allocation in en-
terprise data centers. In Proc. 10th IEEE Network
Operations and Management Symposium, 115–126. Van-
couver, Canada.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

810


