
Teaching PID control to computer
engineers: a step to fill a cultural gap

Alberto Leva

Dipartimento di Elettronica e Informazione e Bioingegneria,
Politecnico di Milano, Italy (e-mail: alberto.leva@polimi.it).

Abstract Many computer engineers either do not receive any control education, or are led to
think that studying control is necessary only for those who want to specialise in embedded
systems, real-time, and so forth. This causes a cultural gap that can have highly undesired
consequences, since control-based techniques are gaining importance as a means to manage
and optimise computing systems. Given the conflicts for time and space that are typical of
articulated curricula like computer engineering, however, a full course on the principles of
systems and control, tailored to computer engineering, is quite often an infeasible solution. This
paper presents an alternative – or maybe better, a workaround – based on a suitably tailored
PID-centred activity, where the occasion is taken to introduce and stress selected general ideas.

Keywords: PID control education; Control of computing systems.

1. INTRODUCTION

There is a high interest – both academic and technological
– and a vast literature on the use of control, often in the
form of simple structures based on PID loops, to manage
and optimise the behaviour of computing systems, see e.g.
the blueprint by IBM (2003), the papers by Abdelzaher
et al. (2003) and Diao et al. (2005) – written respectively
to address the control and the computer communities –
or the books by Hellerstein et al. (2004); Janert (2013);
Leva et al. (2013), covering almost a decade, and their
bibliographies.

However, this apparent interest for control in the com-
puter community, still does not reflect into education as
strongly as it should. Many computer engineering – let
alone computer science – students, simply do not receive
any control education. And those who do, most often take
some “systems and control” courses quite late in their cur-
riculum, only if they are interested in embedded systems,
real time, and the like. This way, computer engineering
students either just ignore the systems and control theory,
or are implicitly taught that computers serve to build
controls, but the core ideas behind control – dynamics,
feedback, and so forth – have hardly anything to do with
the design of computing systems.

Such a philosophy is enforced by most curricula recommen-
dations at the undergraduate level, where the foundations
for the students’ mentality are laid, see e.g. the document
by the Joint ACM/IEEE Task Group on Computer En-
gineering Curricula (2016). Hence it is definitely a main-
stream philosophy, and proposing a significantly different
viewpoint requires thorough justification. Sticking to the
subject of this paper, we therefore need in the first place
to ask ourselves whether or not computer engineers need
control education independently of their specialisation.
Then, since the answer is (quite expectedly) affirmative
but at the same time the computing domain is peculiar

indeed, a second question immediately arises as to what is
the best pedagogical goal for those students. And finally,
as in the addressed domain PI(D) control emerges quite
naturally as a useful tool, we come to wonder whether a
purpose-specific didactic activity based on it, can provide
some countermeasure for the cultural gap sketched above.

The rest of the paper is devoted to provide a tentative
answer to the questions just posed, and is organised as
follows. Section 2 is devoted to showing why all control
engineering students strongly need control education, and
as a consequence, Section 3 expresses some ideas – based
on the author’s experience – about what the pedagogical
approach should be. A possible activity, centred on the
basics of control and taking profit of PID control to convey
the most important ideas according to the mentioned
approach, is sketched out in Section 4. Finally, Section 5
draws some conclusions and outlines future work.

2. WHY ANY COMPUTER ENGINEERING
STUDENT NEEDS CONTROL EDUCATION

Premising that this topic would deserve a paper by itself,
here we start from the opposite side with respect to under-
graduate education, i.e., from the effects of the mentioned
cultural gap on research. First, let us make and discuss a
few statements based on the survey by Patikirikorala et al.
(2012) on control engineering approaches for self-adaptive
software, where 161 papers published between 2001 and
2011 are classified and analysed.

• The survey excludes works not “utilising control-
theoretical approaches” , which “also excludes the
control solutions primarily based on fuzzy logic, neu-
ral networks, case based-reasoning and reinforcement
learning” (Patikirikorala et al., 2012, p. 35).

• Works on “hardware [...] or operating system level
management issues” are also excluded (ibidem, p. 35).

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

ThBT1.2

© 2018 International Federation of Automatic Control 328



• The taxonomy axes are “Target system (application
domain, performance variable, dimension), Control
system (model, type, loop dimension, scheme) and
Validation (simulation, case study” (ibidem, Fig. 1).
Models are mostly black box (ibidem, Table III) as
“analytical” ones are “not available or significantly
complex” (ibidem, p. 36).

• The variety of applied control schemes is wide, from
PID to LQR., MPC and more (ibidem, Table III).

While the first statement seems to focus precisely enough
on “classical” control, the second is quite surprising in a
domain where for example the way a resource is allotted
to an application may heavily depend on the internals
of the operating system. When dealing with functional
requirements (over-simplifying, what software has to do)
taking the lower layers of a system just as a matter of fact
is correct, but for non-functional requirements (how, for
example how fast, the software has to do it) interactions
necessarily come into play. And since the role of (classical
feedback) control is mainly to enforce properties of the
second type, for example to ensure quality of service,
computer engineers cannot only possess the “layered” view
of a system that is quite typical (over-simplifying again)
of software engineering; they also need – it is adding,
not replacing – the idea of interacting subsystems that
is typical of control.

Coming to the other statements, taxonomy axes – again
surprisingly – do not include how the model structure
is chosen, how the controller structure is consequently
selected (including e.g. how to decide where the additional
complication of an adaptive one is worth the effort), and
how the controller is tuned. Given also the variety of laws
and schemes – two ideas sometimes confused with one
another, as for example two items in Table III are “LQR”
and “cascade” – the work (despite its undoubted value)
ends up, viewed from a control standpoint, as a taxonomy
more of how algorithms were taken from a bookshelf and
applied, than of what control problems look like, and thus
how control schemes need structuring and tuning.

On this last aspect, a second paradigmatic work is that
by Heo and Abdelzaher (2009) on AdaptGuard. The idea
is that “adaptation loops” [for which the authors just
mean feedback loops, incidentally], “implicitly assume a
model of system behaviour that may be violated; [...] in
the absence of an a priori model of the adaptive software
system, [AdaptGuard] has to anticipate system instability,
attribute it correctly to the right runaway adaptation loop,
and disconnect it, replacing it with conservative but stable
open-loop control until further notice”. The way to detect
a “violation” is to infer the system causality from I/O
measurements, and identify reversals in the dependencies
among the monitored variables to conclude that some
feedback has changed its sign, therefore provoking insta-
bility. In control terms, this means taking a decentralised
control scheme, and open or close some of its loops on an
observation basis—i.e., turning that scheme into a state-
based switching one. No doubt the reported examples
work, but in the absence of an overall stability analysis,
which could be extremely cumbersome even in an LTI
setting, the author bears to state that this basically means
that the controlled system is tolerant indeed (which is
somehow acknowledged in the paper by saying that “open-

loop actions are stable”). In general, as the lesson to learn
here, we could say that replacing a controller with another
one, especially in a multivariable and interacting system, is
not the same as replacing a generic algorithm with another
one for the same purpose. But again, to appreciate why,
one needs to know about the basics of control.

Sticking to the idea that there is much more to a controller
than its algorithm, one can further observe that in most
works on “adaptive” computing systems, control theory
is viewed as an alternative to other techniques like e.g.
machine learning or heuristics, not as a mental framework
to view problems, and since several computing-related
problems do require significant skills to find the right
abstraction and cast them into a control paradigm, the
conclusion is frequently taken that “the problem is too
complex” for control – in the classical sense – to be applied.
As a result, for many computer engineers and scientists,
control is really hardly anything more than a bookshelf to
take pre-built algorithms from when these seem (no matter
why) to fit the problem, with the detrimental effects above.

Only recently it has been recognised that “even for soft-
ware systems that are too complex for direct application
of classical control theory, the concepts and abstractions
afforded by control theory can be useful” (De Lemos et al.,
2017). Based also on the very few examples just quoted,
we state that the answer to the first question is positive:
the earlier computer engineering students are exposed to
the core ideas behind systems and control, no matter what
specialisation they will subsequently choose, the better.

3. CONTROL PEDAGOGY FOR COMPUTER
ENGINEERS

Having established that computer engineers need “the
core ideas of control”, the question is now what those
core ideas are. The matter is far from trivial, for at
least two reasons: first, the computing domain is highly
peculiar with respect to any other control one; second,
assuming that the students receive systems and control
theory education as early as possible, most likely they
will subsequently be left basically alone as for establishing
relationship between that theory and the design practices
they will be taught. This is not an impossible assignment,
but no doubt it is not easy at all. As such, and specifically
in a view to strengthening the students enough for the said
assignment, the ideas to convey to them must be as general
as possible with respect to any specific application, easy to
grasp and understand firmly, and as mathematically light
as possible so as to be easy to retain and keep alive even
when technical details get lost.

In particular, at least according to the author’s experience,
attempting to evidence and discuss the peculiarities of
the computing domain should be avoided. No doubt they
are relevant: to quote just two, in no other domain the
controller and the controlled objects are as homogeneous
as two pieces of software, nor are they manufactured to-
gether and often by the same developer, and in no other
domain can sensing and actuation depend on component
(like operating systems modules) that were not necessarily
designed for the purpose of control—see Leva et al. (2013)
for details impossible to report here. However, discussing
these facts at the undergraduate level is definitely prema-

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

329



ture, and instead of clarifying the scenario as it would
do with a more educated audience, may on the contrary
induce the idea that control concepts (not the way they are
applied, beware) need somehow “customising” for comput-
ing systems, which is the exact opposite of the intended
goal.

At the Politecnico di Milano, the author teaches a course
titled “Fundamentals of automatic control” to sophomore
computer engineering students. This is not a standard situ-
ation, as the course comprehends 65 hours of lecture, 35 of
classroom practice, and two laboratory sessions of 3 hours
each, which is far more than usual; the percent distribution
of the lecture hours among the course subjects is shown in
Figure 1. Note the apparently small part devoted to PID,
but consider the hours for “control synthesis” in general.

Introduction & review 14

Systems theory 30

Signals & transforms 14

Block diagrams 5

Control synthesis 18
PID theory 5

Realisation & coding 14

Figure 1. Percent hours distribution in the “Fundamentals
of automatic control” course.

Despite its peculiarity the course provides an interesting
probe, because several students show up some years later
for a MSc thesis, most frequently involving control and
computing systems. That is a good moment to first see
what they retained of the subject, and then – during the
activities carried out in cooperation – to observe how they
apply control ideas, what are their weaknesses, and what
is felt as really “fundamental”.

The result of this experience over more than 15 years
clearly indicates that for computer engineering students,
at the undergraduate level, the really important things
are the general ideas of dynamics, feedback, disturbance
rejection, (internal) stability, and performance indices.
Also, limiting the scope to the discrete time domain is
feasible. More advanced concepts are surely necessary e.g.
for researchers willing to cooperate with control scientists,
but these can be quite easily learnt later on, if the basis is
solid enough.

In a generic computer engineering curriculum, however,
only a limited amount of hours (say 20 or less) could pos-
sibly be devoted to teaching control to everybody, either as
a standalone activity or joined e.g. to some software engi-
neering course: according again to the author’s experience
it can be very difficult to negotiate such a space, but in
the last years the interest for the subject is growing, and
the argument that “sooner or later education should start
following” may work. Hence in the following we assume
that some space is available, and address the problem of
making the most effective use of this space in the light of
the considerations above. And this is where PID control
comes into play.

4. DIDACTIC ACTIVITY

The aim of this section, more than describing an activity
in detail, is to just give a sketch of it, to illustrate the
way it should be designed for the purpose stated above,
and in particular, why and how PID control can be
exploited. Once the why and the how are established, in
fact, the detailed activity design is largely adaptable to
the instructor and the class peculiarities—possibly even
revolutionising the presented sketch completely.

To provide some operational figures, supposing to start
completely from scratch if not for basic algebra, calculus
and procedural programming, which seems a reasonable
outset, the activity can span about 16 hours. A set of
slides, targeted to approximately ten hours of lectures and
six of classroom practice, is at present being prepared and
will be offered as soon as ready as a possible teaching
material (or better, as an example of how the concepts
exposed hereafter can be applied). Needless to say, also
the following treatise is based on the author’s experience,
thus no absolute truth is claimed, and if the following
presentation may seem a bit prescriptive, this is only for
compactness. In fact, the author has far more doubts than
certainties: discussions, criticisms and alternative propos-
als would be highly beneficial and therefore appreciated.

This said, a good way to start the treatise is to point out
some characteristics of computer engineering students that
further justify the quest for a specific manner to introduce
systems and control to them, but at the same time ground
the proposed activity. The list is not exhaustive, of course,
and also a bit tranchant for brevity, but enough for our
purposes.

• When confronted with a problem, computer engineer-
ing students tend to first come up with a solution and
then discuss its properties.

• In doing this, like in virtually any reasoning, they
like to base the discussion on “use cases” wherever
this makes sense.

• When the problem is to reach a goal, they tend to seek
the “magic move” to get there in one step, under the
implicit assumption that if the goal is missed and the
move needs repeating, aiming constantly at the goal
will result in the shortest path.

• They are acquainted to describing functional objects
as algorithms and data structures, or state machines
and data paths, rather than with models made of
equations.

There is a vast literature supporting the idea of designing
systems by “optimising the most frequent use case”, and
such an approach has already proven to fit a number of
designs. But for learning control, sticking only to this
forma mentis also causes problems. Evidence is (briefly)
provided in the following. Now, for the activity sketch.

4.1 Incipit

A possible introduction could sound like this. If you (the
students) search the literature for “control in computers”
you will find that (i) there is a lot of material, and (ii)
the PID controller is one of the most widely employed.
Since an incorrect use of that object can be as disastrous

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

330



as a good use beneficial, however, you must understand
the underlying principles, that is, the essentials of systems
and feedback control theory. This activity will make you
capable of using PID control knowledgeably, and as a by-
product, will teach you what a dynamic model of a system
is, which in turn is useful e.g. to detect when a problem
cannot be tackled with a PID and thus you need to learn
more control, or seek advice from a specialist, or both.

4.2 Step 1

This step, say two hours long, is about generalities and
formalisms. Start with a very colloquial introduction to
“control”, make a lot of examples, in the continuous and
the discrete time. and possibly also some simple event-
driven cases. Provide literature references, also from the
computer literature, but essentially to make the students
aware of the existence of the “control in/for computers” re-
search and technology domain. Most important, however,
if not for the purpose just mentioned, positively refrain
from approaching examples in the computing domain, or in
a few minutes the class is lost into irrelevant technological
details.

On this front, speak the language they will encounter later
on when learning/reading about self-adaptive systems and
the like, which is basically the way the computer commu-
nity calls systems endowed with control, and make this
language choice explicit. Introduce the ideas of “objective”
and tell them that when this is representable with a signal
(and it is in more cases than one may expect) we call
it set point or reference, of “outcome” or “quality met-
rics” (controlled variable), “action” or “tuning knob” or
“parameter” (control signal), and finally “exogenous” or
“environmental” or “external action” (disturbance). Pay
attention to false friends, that are ubiquitous. For example,
in systems theory “parameter” is a quantity characterising
a system, not a variable; in computer engineering “param-
eter” is understood as in ’‘formal” and “actual parameter”
for a function in a program, i.e., it means “input”.

Then introduce the idea of dynamic system, the basic
control-to-system connections, and the ways the controller
can be invoked (no words required here on this). Re-
call that computer engineering students start out with a
prescriptive and algorithmic – rather than a-causal and
equation-based – mindset, and as long as they can cast
ideas into that mindset without misinterpretations, follow-
ing explanations is facilitated. A possible outcome of this
step is a brutally simplified taxonomy, like

Controller:

type = {modulating,logic}

timing = {continuous,discrete,

event-triggered}

connection_with_system = {open-loop,closed-loop}

disturbance_compensation = {present,absent}

Finally, restrict the focus to the modulating discrete-
time closed-loop case, with the motivation that (i) it is
enough to explain the general ideas and (ii) it allows
for particularly standard and general-purpose (the magic
word for them is “reusable”) solutions.

4.3 Step 2

This, say two hours as well, is about feedback and dy-
namic systems. In this order, because the former has to
be understood independently, or the risk of mixing up
feedback and iterative computations, as well as block and
flow diagrams, is emphasised when on the contrary it
needs strongly preventing, as the mindset of computer en-
gineering students is particularly keen to such conceptual
mistakes. Just describing, needless to say—no intention to
judge. Figure 2 reports three slides devoted to introducing
feedback in general, no further explanation is needed here.

Figure 2. Teaching material example – slides to introduce
feedback.

As for dynamics, one can go the usual way to explain
that some systems remember the past. Just take care to
call the state in as many ways as possible like “present
condition”, “internal configuration”, and so forth. This, if
firmly grasped, will allow the students, later on in their
studies, to understand that the idea of “adaptiveness” as
“the ability of a system to respond in different manners to
the same stimulus depending on some internal condition”
can sometimes (but not so infrequently, one may add) be
re-formulated simply as that system being dynamic.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

331



This said, write some example in the time domain, in-
troduce the one-step advance operator z (without talk-
ing about transforms, at least in the author’s opinion)
and show that any input-output model can obviously be
written as a “compound” operator, that we call “transfer
function”, constructed with the elementary one z.

Finally, just a few words on stability. A fast way to
say just the necessary, is to analyse the first-order case,
which is trivial, and then view higher-order systems as the
series/parallel of first-order ones; the role of the poles is
immediately evident. Systems with complex poles can be
left as an exercise. At this point, it is convenient to have
the first couple of classroom practice hours.

4.4 Step 3

−0.5
0

0.5
1

y A
(k
)

−0.5
0

0.5
1

y B
(k
)

−0.5
0

0.5
1

y C
(k
)

0 1 2 3 4 5 6 7 8 9 10
−0.5

0
0.5

1

k

y D
(k
)

Figure 3. Example of step responses from dynamics suit-
able for PI/PID control, for model interpretation.

This is about describing system and goals. Limit the
scope to the asymptotically stable case, it suffices here.
Show how to compute a step response (first by hand and
then e.g. with Scilab 1 ), point out the role of the gain,
and introduce other characterising quantities like settling
time, maximum overshoot, undershoot. Now, show some
responses – Figure 3 is an example – and provide some
“use case” interpretation. For example, if the input is an
allotted resource and the output a performance metrics
for an application, the four responses shown could be
explained as follows.

A. The resource is acquired and immediately exerts its
effect (thus seen at the very next step).

B. The resource acts immediately but takes some steps
for its full effect (for example because a queue needs
emptying).

C. The resource produces transiently enhanced effect
(typical when the metrics is the speed toward a goal).

D. The resource requires effort to be acquired and ini-
tially reduces performance, like e.g. a new core that
initially makes a lot of cache misses.

1 http://www.scilab.org

Apparently, all responses come from a second-order trans-
fer function, possibly with one zero (which is well suited for
PID control, incidentally). Stress as strongly as possible
that different “use cases” come from one model. This is
very important, because in hardly any other place may
the students get the idea that a single object can produce
so different behaviours by just changing parameters. As
an example of the resulting damage, the author once had
a very hard time convincing (maybe) some non-newbie
computer people that an automated vehicle does not need
one controller “per behaviour” – i.e., one for turning, one
for accelerating, one for braking and one for cruising (plus
of course a supervisor deciding which one to activate,
and possibly learning from experience) – but basically
(accepting here a high-level viewpoint) a direction and
a speed control receiving the convenient set points. Such
attitudes need preventing as early as possible.

Carrying on, show how requirements in the time domain
can be translated into a desired reference-to-output or
disturbance-to-output transfer function, and here too, do
rely on computer-related examples like varying the CPU
share of a task, recovering a response time in the face
of a load increase, and so on: in the quoted books there
are a lot of suggestions. Then, draw the block diagram
of a closed-loop system (according to experience the di-
agram formalism is self-evident enough) and show how
the required transfer functions depend on that of process
and controller by loop balance equations. Finally, learn
to obtain a controller by solving the required closed-loop
equation (first by hand and then e.g. with wxMaxima 2 ,
see the example script below.

kill(all);

C : rhs(solve(c*P/(1+c*P)=To,c)[1]);

C1 : factor(subst([P=2/(z-0.5),To=0.2/(z-0.8)],C));

D2Y: factor(subst([P=2/(z-0.5),c=C1],P/(1+c*P)));

In the script first a controller is computed to assign
the reference-to-output dynamics, then a specific case is
shown, and finally it is verified that here asymptotic set
point tracking requires an integrator and implies asymp-
totic disturbance rejection.

4.5 Step 4

Specialise the treatise to 1st/2nd order case processes,
possibly with an integrator, and revisit examples to see
how wide the coverage is. Derive controllers and intro-
duce the PI/PID, which is now straightforward. Isolate
and interpret the actions in common language (prompt
response, zero steady-state error, anticipation). Introduce
windup and antiwindup. Write a PI algorithm step by step
and commenting. Give a PID one to study at home. This
may be a good point for two further hours of practice,
paying attention to the code. Do not disregard this as in
computers one has very frequently to write it, and the
network (a primary source of information for students)
provides many examples where not even antiwindup is in
place; see Maggio and Leva (2011) for a deeper discussion
on this aspect.

To end this part, compute and plot some responses, includ-
ing the control signal. Stress that (i) the “solution” was not

2 https://sourceforge.net/projects/wxmaxima

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

332



figured out directly as algorithm but through a model that
generated the algorithm unambiguously, (ii) feedback leads
the system to the desired state with no attempt to find
any “magic move”, and (iii) when properties are assessed
formally on models, they are guaranteed. Extensive testing
is useful to check the correctness of the code, and for other
issues not pertaining to basic teaching, but not to verify
the properties of a dynamic system.

4.6 Step 5

As the final step, explain why the PI(D) fits so many
problems nut also what are its limitations. Stress the
importance of figuring out the structure of the controlled
dynamics. Show some examples when the desired TF can-
not be obtained with a PI(PID. Carry out some tuning
procedures and stress the importance of doing it properly
(for example, deliberately make the integral action insuf-
ficient and see how long it takes to get to steady state
after a fast initial transient, or tune for reference tracking
and see how sluggish the disturbance response can be, and
so forth). Bring in some process/model mismatch, explain
its possible meaning (for example, a gain reduction may
be a processor running slower because the overheating
protection has intervened) and see the results; take the
occasion to say a very few words about robustness, and
sketch out open problems (no need for a list here) to
stimulate further learning. Two final hours of practice,
allowing the students to propose examples, can conclude
the activity.

4.7 Some general remarks

Although the organisation is largely indicative, the pro-
posed activity should inherently be capable of addressing
the issues stemming from the bullet list at the beginning
of this section. The students should at least perceive the
power and usefulness of not attempting to find a solution
without going through a formalisation (modelling) of the
problem, of not relying excessively on any set of use cases
(no matter how wide), of not seeking the “one-step” path
to the optimum, whatever it is, but rather letting feedback
do its work, and finally of assessing anything in the world
of models, when possible, and letting algorithms follow.
The students should also reasonably master basic PID con-
trol, in the SISO discrete time case and for asymptotically
stable or integrating low-order processes, which is enough
in many computing-related case. Finally, they should be
able of detecting that a problem is not tractable this way
based on the dynamic characteristics of that problem,
for example as stemming from process responses—and
abstraction capability that only control can teach, and is
precious in many situations.

5. CONCLUSIONS AND FUTURE WORK

An activity was presented, of size compatible – hopefully,
at least – with being inserted in a computer engineering
curriculum and proposed to all the students. The activity
is based on PID control, but not totally centred on it. In
fact, the underlying rationale is to provide the students
with firm and clear ideas about what control is, as early
as possible in their education.

Apart form presenting a sketch of the activity, the focus
was here set on (some of) the main cultural obstacles to
a correct understanding – and therefore an effective adop-
tion – of control concepts and methods in the computing
domain.

As anticipated, some teaching material is being prepared,
and will be made available – in the form of slides and
scripts for free software tools – as soon as possible. Future
work will consist in refining this material, and learning
from experience to refine the didactic approach as well.
The author hopes in the first place that the ideas expressed
herein, and the material just mentioned, will be helpful to
both the control and the computer engineering communi-
ties, and then, more in perspective, that all of this can
stimulate discussions and cooperation.

REFERENCES

Abdelzaher, T., Stankovic, J., Lu, C., Zhang, R., and Lu,
Y. (2003). Feedback performance control in software
services. IEEE Control Systems Magazine, 23(3), 74–
90.

De Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Anders-
son, J., Litoiu, M., Schmerl, B., Weyns, D., Baresi, L.,
Bencomo, N., et al. (2017). Software engineering for self-
adaptive systems: Research challenges in the provision
of assurances. Software Engineering for Self-Adaptive
Systems III. Lecture Notes in Computer Science, 9640.

Diao, Y., Hellerstein, J., Parekh, S., Griffith, R., Kaiser,
G., and Phung, D. (2005). A control theory foundation
for self-managing computing systems. IEEE journal on
selected areas in communications, 23(12), 2213–2222.

Hellerstein, J., Diao, Y., Parekh, S., and Tilbury, D.
(2004). Feedback control of computing systems. John
Wiley & Sons, New York, NY, USA.

Heo, J. and Abdelzaher, T. (2009). AdaptGuard: Guard-
ing adaptive systems from instability. In Proc. 6th
International Conference on Autonomic Computing, 77–
86. Barcelona, Spain.

IBM (2003). An architectural blueprint for autonomic
computing. IBM White paper.

Janert, P. (2013). Feedback control for computer systems.
O’Reilly Media, Sebastopol, CA, USA.

Joint ACM/IEEE Task Group on Computer Engineering
Curricula (2016). Curriculum guidelines for undergradu-
ate degree programs in computer engineering. Technical
report, Association for Computing Machinery and IEEE
Computer Society.

Leva, A., Maggio, M., Papadopoulos, A., and Terraneo,
F. (2013). Control-based operating system design. IET,
London, UK.

Maggio, M. and Leva, A. (2011). Teaching to write control
code. IFAC Proceedings Volumes, 44(1), 7292–7297.

Patikirikorala, T., Colman, A., Han, J., and Wang, L.
(2012). A systematic survey on the design of self-
adaptive software systems using control engineering
approaches. In Proc. 2012 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
33–42. Zürich, Switzerland.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

333


