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Abstract: A new Fractional Order Proportional-Integral (FOPI) controller tuning method is proposed in this 

paper for process control systems. This is achieved by combining Biggest Log-modulus Tuning (BLT) 

method and Internal Model Control (IMC) method of designing conventional PID controllers to tuning 

FOPI controllers for multivariable processes. Unlike the conventional PID case, internal model control 

method is first used to design the FOPI controller and obtain preliminary values of controller parameters. 

This yields simple formulae for setting controller gains. Thereafter, the FOPI controller gains are adjusted 

using a single detuning factor (F) until a biggest log modulus of 2n dB is obtained where n is the number 

of loops. Extended simulation studies show that good compromise between performance and robustness 

can be achieved for multiloop process control applications with the proposed FOPI controller. 
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

1. INTRODUCTION 

This paper addresses the design and tuning of Fractional Order 

Proportional-Integral (FOPI) controller for multivariable 

process control systems. Multivariable system control is 

known to be more challenging to design when compared to 

scalar processes. This is primarily due to the presence of 

interactions and directionality in such systems. This limits the 

scope of application of most parametric model-based design 

algorithms to Single Input Single Output (SISO) applications 

(Huang, et al., 2003). Over the past decades, several methods 

of solving multivariable control issues have been proposed for 

conventional PID controllers (Loh, et al., 1993; Luyben, 

1986). Niederlinski modified Ziegler-Nichol’s tuning rule for 

MIMO processes by introducing a detuning factor to meet the 

stability and performance of the multi-loop control system. 

Luyben introduced the Biggest Log-modulus Tuning (BLT) 

method which is a frequency domain PID controller design 

method. It uses a detuning factor (F) iteratively to decouple an 

interactive MIMO system (Luyben, 1986). A detailed review 

of some multivariable PID design methods was published by 

Shiu and Hwang (Shiu & Hwang, 1998). One common 

limitation of these design methods is that all the algorithms are 

limited to conventional PID controllers and do not address 

fractional-order controllers.  

The level of interaction in MIMO systems can be estimated 

using Relative Gain Array (RGA). This information is a useful 

guide in variable pairing for some form of multi-loop 

decoupled control. In MIMO system, the relative gain of ijth 

loop ( ij ) is defined as the ratio of the gain of ijth loop when 

all other loops in the system are open to the gain of the same 

loop when all the other loops are closed. 

RGA is generally computed as a function of frequency. It is 

the corresponding matrix of relative gains ( ijG ) as given in (1). 

  1

ij ij ji
G G       (1) 

A large RGA value indicates high level of interaction in a 

particular system. Similarly, small RGA signifies lower level 

of interaction between the associated variables. Physical 

relationship of variables are also given primary consideration 

during variable pairing before designing the multivariable 

controller. It is assumed in this work that parameters are 

effectively paired using similar techniques and each sub-

transfer function of the model is open loop stable. Many 

processes in practice are found to be open loop stable. Relative 

success of these conventional PID control design methods for 

MIMO systems can be found in many publications (Jevtovića 

& Mataušek, 2010; Besta & Chidambaram, 2016). 

Besta and Chidambaram (2016) modified Luyben’s BLT 

method by using internal model control approach to design 

conventional PID controllers for two input two output systems. 

The authors implemented designed controllers using two 

configurations: centralised and decentralised (multi-loop) 

control structures. However, it was limited in scope to 

conventional PID controllers with integer order. In this paper, 

a multi-loop design approach is extended to controllers with 

fractional orders (FOPI controllers) and BLT tuning method is 

developed for tuning FOPI controller gains. 

 

This paper is organised as follows. This section sets out the 

introduction and background problems of multivariable 
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control. Section 2 reviews BLT method of tuning conventional 

PID controllers for multi-loop process control systems and 

Internal Model Control (IMC) design method for conventional 

PID controllers. In section 3, IMC method is extended to 

design FOPI controllers and the FOPI controller gains are 

analytically derived. Section 4 describes the tuning of derived 

IMC FOPI controller settings in order to meet a frequency 

domain based performance objective. In addition, robust 

stability analysis is addressed in this section. Section 5 

presents simulation study of distillation column control. 

Performance of proposed controller is also addressed in 

section 5 while section 6 presents major conclusions of the 

paper. 

 

2. BACKGROUND OF BLT TUNING METHOD 

In the original BLT control design method, Ziegler-Nichols 

setting was used to obtain initial gains of the controller before 

final fine tuning (Luyben, 1986). Ultimate gains and ultimate 

periods of diagonal elements of the system’s transfer function 

G(s) were first determined experimentally as
, , and u jj u jjk  . 

Subsequently, a Ziegler-Nichols setting for each loop was 

calculated (
, ,,c jj i jjk  ) and final fine tuning of the conventional 

PID controller was carried out. The BLT tuning method is 

summarised as follows:  

Firstly, the j-th diagonal PI controller is given by (2) below: 

 ,

,

1
( ) ( ) 1c j

i j

C s k s
s

 
  

 
 

   (2)

where
, =c jk controller gain;

, = i j integral time constant for jth 

PI controller. Thereafter, the frequency domain characteristic 

function (W) is defined where: 

( ) 1 ( ) ( ) ;  identity matrix.W j I G j C j I         

The tuning factor F is initially chosen such that 2 < F < 5. The 

detuning factor (F) is adjusted by defining a closed loop 

function L as follows: 

 10

( )
( ) 20

( )

W
L Log

I W








   (3) 

The factor F is further tuned to meet a specified sensitivity 

requirement. Final controller gains are obtained using F as 

follows: 

,

, , ,;  .
c jj

c j i j i jj

k
k F

F
     

Immediate advantages of this method are simplicity and less 

computational load. One disadvantage is that it requires 

experimental determination of a process’s critical frequency 

point. However, in the new method proposed in this paper, 

ultimate frequency point experiment is not required as the 

design method is not based on Ziegler-Nichol’s PID tuning 

rule. FOPI controller is designed using internal model control 

method.  

2.1 Brief Review of Internal Model Control Method 

A simple method of IMC design commonly termed SIMC 

algorithm was developed for tuning conventional PID 

controllers by Skogestad (Skogestad & Grimholt, 2012). Here, 

controller parameters are derived to meet a desired closed loop 

set-point specification. It retains some features of the direct 

synthesis method. Consider a process G(s) with First Order 

Plus Dead Time (FOPDT) characteristic: 

 ( )
1

Lske
G s

s






 

where: L = time delay; = process time constant; k = system’s 

steady state gain. SIMC method results in a conventional PI 

controller with gains defined as follows: 

;   min{ ,4( )}
( )

c i f

f

k
k


   

 
  


                         (4) 

The filter’s time constant f  is usually selected as a function 

of the system’s time constant. This gives room for tuning using 

a small parameter .  i.e. .f    is sometimes chosen 

between 0.7 and 1.5. 

If the model is a Second Order Plus Dead Time (SOPDT) 

system, PID controller type is obtained with gains defined as:

  

 1

1 2;  min{ ,4( )}; .
( )

c i f D

f

k
k


     

 
   


 (5) 

SOPTD model is of the form:
  1 2

( ) .
1 1

ske
G s

s s



 




 

   

These formulae are unsuitable for FOPI controllers and as 

such, new formulae are derived analytically in this paper for 

FOPI controller type. Recently, optimisation-based methods 

have been exploited to design optimal FOPID controllers using 

IMC framework but the authors developed it for a class of 

SISO system which exhibits fractional first order plus dead-

time dynamic characteristic (Padula, et al., 2014). However, 

this paper addresses design and tuning of FOPI controller for 

multivariable process control systems.  

3. PROPOSED DERIVATION OF FOPI CONTROLLER 

Consider a SISO transfer function G(s): 

 1

1

( )
1

Lsk e
G s

s






  (6) 

where: L = time delay; 1 = process time constant; k1 = system’s 

steady state gain. Let the desired trajectory be denoted by D. 

Since set-point tracking is a primary design objective, the 

expected trajectory D can be expressed as shown in (7): 
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1

Ls

c

e
D

s






  (7) 

It is clear that D is the desired closed loop set-point 

specification for the entire control system. If C(s) represents 

the controller, it implies that: 

 
( ) ( )

.
1 ( ) ( )

C s G s
D

C s G s



  (8) 

The controller C(s) is of the FOPI form given in (2) and can 

be re-written as shown below in (9): 

 
1

( ) .i

c

i

s
C s k

s









 
  

 
  (9) 

From (8): ( ) ;
( ) ( )

D
C s

G s DG s



  

 1 1

1 1

( ) .
1 1 1 1

Ls LsLs Ls

c c

k e k ee e
C s

s s s s   

     
            

  

Substituting controller equation as given in (9):  

 1

1 1 1

1 1

( 1)

i

c

ci

s s
k

k s k k Lss





 



  
 

   
  (10) 

 1

1

1 1

( )

i

c

ci

s s
k

k L ss





 



  
 

 
  

To simplify (10), put: .s j   

Also, substitute the term: cos sin
2 2

j j      in (10). 

 
1

1

11 cos sin
2 2

1

( )

c
i

c

k j

j

j k L



 

 



 

  
    

  






  (11) 

Considering the right-hand side of (11) and rationalising it 

to remove complex operator from denominator: 

 11 cos sin
2 2

c
i

k j A jB

 

 

  
     

  
  

where: 

 
 

 

2

1 1

2 2 2 2 2 2

1 1 12

c

c c

k L
A

k k L k L

  

   



  

  

 1 1 1

2 2 2 2 2 2

1 1 12

c

c c

k k L
B

k k L k L

   

   




 
  

Comparing real part yields: 

 

cos
21c

i

k A




 

 
 
  

  
 

  (12) 

 

1 cos
2

c

i

A
k

 
 





  (13) 

Integral gain (and by extension integral time) can be obtained 

by comparing imaginary part: 

 

sin
2

ik

B





     

 

sin
2

i

B
k




   (14) 

Integral gain is computed first before combining (13) with 

(14) to get proportional gain. Integral time can be obtained 

as: 

 

cos
2 .i

i

A

k 






    

These formulae are used to calculate the initial gains of the 

controller parameter for each loop. Furthermore, given the 

FOPDT model in (6), process’s relative dead-time (T) is 

defined as:
 1

.LT
L 




 A guide to selection of fractional 

order based on T is available (Monje, et al., 2010). This is 

given in Table 1. 

FOPI controller settings are determined individually for each 

jth-diagonal transfer function using (15), (16) and (17). 

 
,

sin
2

i j imc

B
k



    (15) 

 ,

,

cos
2

i j IMC

i j IMC

A

k 










    (16) 

 
,

,1 cos
2

c j imc

i j IMC

A
k

 
 









  (17) 

4. PROPOSED TUNING OF IMC FOPI CONTROLLER 

The derived FOPI controller gains given in (15) and (17) can 

be fine-tuned using BLT to meet a defined frequency domain 

specification. These parameters are tuned to meet set-point 

tracking objective as well as disturbance rejection using BLT 

approach. A summary of the procedure is given next. 

 Consider each diagonal PI controller; determine 

the IMC gains for each diagonal loop using (15) 

and (17). Here, the IMC tuning parameter ( ) is 

unused as it is set to one. 

 Initial value of the BLT detuning factor F is 

initially chosen as 0.7 if relative gain array 1.ij   

If the relative gain array is greater than one, F is 

initially assumed to be 1.5. 

 The preliminary gains of the controller are 

calculated as follows: 
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,

,

c j IMC

c j

k
k

F


   (18) 

 , ,I j I j IMCF      (19) 

 The diagonal controller matrix is calculated as 

( )C s  where 

11 0 0

( ) 0 0 ;

0 0 ij

C

C s

C

 
 

  
 
 

 i =j =3 for a 

three input three output system.  

 Determine a corresponding multivariable Nyquist 

diagram of the scalar function: 

 ( ) 1 ( ) ( )W j I C j G j        (20) 

 Determine the multivariable closed loop log 

modulus L as shown below in (21). 

 
10

( )
( ) 20

1 ( )

W j
L j Log

W j





 


  (21) 

 The peak of L over the entire frequency range is 

the biggest log modulus termed max .L   

 Finally, the factor F is varied (with 0.01 

incrementally) until maxL  is equal to 2n (4 dB for 

two-input two-output system and 6 dB for three 

input three output system). Here, n is the number 

of independent loops in the system. 

Final gains are obtained using F when maxL is equal to 2n. 

FOPI controller is realised using (18) and (19). 

4.1 Stability and Performance Analysis 

Robust stability analysis is required in order to know the 

degree of stability of the control system in the presence of 

plant-model mismatch and other uncertainties. Many dynamic 

perturbations that may occur in different parts of a system can 

be lumped into a single perturbation block  .  

In this paper, inverse maximum singular value (ISV) method 

is considered to analyse robust stability because of suitability 

for MIMO system analysis. Given a process multiplicative 

input uncertainty  ( ) ( ) ,IG s I s  if (22) holds, then the 

system is stable. 

  1

( )

1
( ) ( ) ( ) ( )

I j

I C j G j C j G j



   




 


 (22) 

where   is the maximum singular value of the closed loop 

system. For the process multiplicative output uncertainty 

 ( ) ( ),OI s G s the closed loop system is said to be stable if 

(23) holds. 

 
  1

( )

1
( ) ( ) ( ) ( )

O j

I G j C j G j C j



   




 


  (23) 

( ) and ( )I Os s   are assumed to be stable. Matlab program 

can be developed to plot the right hand side terms of (22) and 

(23) in order to reveal regions of stability for each control 

system. The greater the area under the curve, the greater the 

stability of the system. Therefore, a more robust controller will 

yield larger area under the curve. This index is used throughout 

this paper to compare controllers in terms of robust stability. 

5. DISTILLATION COLUMN CONTROL EXAMPLE 

A 19-plate, 12-inch diameter distillation column was 

experimentally set up and studied by Ogunnaike and Ray 

(Ogunnaike & Ray, 1983). The column (identified as ORA) 

had side-stream draw off as well as variable feed input with 

measurements taken for plate temperatures, overhead 

composition, reflux, feed flow rate and product lines. Details 

of the model is found in the paper. The transfer function matrix 

G(s) for the process is given below: 

 

2.6 3.5

6.5 3 1.2

9.2 9.4

0.66 0.61 0.0049

6.7 1 8.64 1 9.06 1

1.11 2.36 0.012

3.25 1 5 1 7.09 1

34.68 46.2 0.87(11.61 1)

8.15 1 10.9 1 (3.89 1)(18.8 1)

s s s

s s s

s s s

e e e

s s s

e e e

s s s

e e s e

s s s s

  

  

  

  
 

   
  
 

   
  
 

    

  

Let the output variables be represented as shown below: 

1y  overhead composition; 

2y  side-stream composition and 3y  bottoms composition 

(19th tray temperature in Celsius). The input variables are: 

u1 = reflux flow rate (m3/s); u2 = side-stream product flow rate 

(m3/s); u3 = reboiler steam pressure (kPa). 

The disturbances are: 

= feed flow rate changes (m3/s); = feed temperature 

changes (Celsius).         

The relative gain array matrix is calculated first: 

 

-0.1904 1.1625 0.0278

1.9928 0.1854 0.8074 .

0.8024 0.0229 1.7796



 
 

  
 
  

  

Thereafter, the proposed algorithm is used to obtain the 

controller parameters. The three diagonal transfer functions are 

considered independently. That is: 

 
2.6 3

31 2

1 2 3

0.66 2.36 0.87(11.61 1)
; ; .

6.7 1 5 1 (3.89 1)(18.8 1)

s s syy ye e s e

u s u s u s s

   
  

   
  

   

The initial IMC gains are calculated as explained in the 

algorithm. The transfer function of the third loop is first 

approximated as a FOPDT model using Taylor series before 

calculating IMC settings. If the second order transfer function 

is used directly, a derivative component will be required. In this 

paper, only proportional and integral gains are required using 

the FOPI control structure. These gains are tuned accordingly 

1d 2d
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as F is varied until 
maxL  equals 6 dB. Resultant parameter gains 

are tabulated in Table 3. The controller is implemented in a 

multiloop (feedback) control configuration. 

5.1 Performance and Disturbance Rejection 

The proposed controller is simulated under drastic 

perturbations. A 20% step disturbance signal (d1) is introduced 

at t = 500 minutes while a 30% step disturbance signal is 

simultaneously introduced at t = 600 minutes as changes in 

feed temperature (d2). The simulation is ran for 800 minutes 

and results are shown in Fig.1 – Fig. 6. It is desirable to see 

how this proposed controller compares with optimal PI 

controller developed by the original authors who modelled the 

ORA column. Therefore, the MIMO FOPI controller is 

compared with an Optimum PI controller (OPI) proposed by 

Ogunnaike and Ray under exact conditions and disturbances. 

Inverse maximum singular value analysis is used to quantify 

robustness of the FOPI control system and results are plotted 

in Fig. 3 (blue line). ISV result for the OPI controller is shown 

by the red line in Fig.3. The area below each curve represents 

stability region as the lines depict stability bounds. It can be 

observed that the blue line covers a greater area and that shows 

a greater stability region provided for by the proposed FOPI 

controller.  

 

Set-point tracking or steady state error reduction is judged 

using integral absolute error. This is tabulated in Table 2. In 

terms of performance, the proposed method compares 

favorably with the optimum PI method as reflected in the 

tabulated IAE index. However, the proposed method does not 

require any extensive optimisation routine. This reduces 

computational burden when compared with optimal methods 

like the ORA optimum PI controller. In addition, it yields a 

more robust control system as shown by the ISV analysis of 

sensitivity in Fig. 3. 

6. CONCLUSIONS 

The main contribution of this paper is the development of a 

simple design and tuning method for fractional-order PI 

controller for MIMO process control system. The proposed 

FOPI controller is first realised using internal model control 

method. IMC setting for each diagonal controller is further 

tuned using BLT approach to obtain better settings for 

proportional and integral gains. Analysis of system’s 

robustness using inverse maximum singular value of 

sensitivity shows greater region of stability compared to the 

conventional PI controller. 
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Table 1. Selection of fractional order 

Relative Dead Time Recommended Order 

T<0.1 0.7 

0.1 ≤ T < 0.4 0.9 

0.4 ≤ T < 0.6 1.0 

T  ≥ 0.6 1.1 

 

Table 2. Performance Comparison 
 

 
Fig.1 Top composition set-point tracking comparison with r1 

=1. 
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FOPI 38.4 31.0 33.9 

Optimum PI (OPI) 12.42 53.48 12.06 
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FOPI 
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Settling T.(m)-OPI 10 90 100 
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Fig.2 Bottoms composition set-point tracking comparison with 

r3 = 1. 

 
 

Fig.3 Stability regions for input and output uncertainties.  

 
Fig.4 Disturbance rejection: Top composition. 

 

 
Fig.5 Sidestream composition loop: Disturbance rejection. 

 

 

 
 Fig.6  Sidestream composition set-point tracking comparison with r2 =1. 
 

Table 3. Controller parameters 
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Proposed FOPI - y2

Reference r2

Disturbance d1

Disturbance d2

OPI y2 output
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