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Abstract: A new constrained predictive PID controller is presented to achieve stability and performance
robustness in Wireless Networked Control Systems (WNCS), where the communication is subject to
dropouts in both communication directions: sensor to control and control to actuator transmission. The
control strategy is based on a new PID controller with similar properties to Model-Based Predictive
Control (MBPC). A Kalman filter used for output prediction and a consecutive dropouts compensator
have also been added to the control scheme. The purpose of this approach is to develop an estimation
algorithm and a control system that maintain information of the sensor packets and the control actions.
Several experiments using the TrueTime network simulator showed that the predictive PID controller
performs as good as the MBPC scheme with the advantage of having a simple structure.
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WNCS are control systems where controllers, actuators and
sensors are connected to a shared communication network.
WNCS applications are increasing as a result of stronger indus-
trial and academic interests in the potential benefits of these sys-
tems. The networked solution offers the possibility of decreased
costs, simplify the installation and maintenance and increase
system-wide monitoring and control capabilities. However, the
inclusion of the network leads to significant technical barriers
that limit the application of wireless technologies in process
control. The main issue is the limited capacity of the shared
channel that causes the degradation of WNCS control perfor-
mance. In particular, the network may introduce large commu-
nication delays and loss of information, which greatly influence
the controller stability and robustness. These problems moti-
vated the development of control systems that address the com-
plexity and intricate estimation of the WNCS, meanwhile, the
simplicity and efficiency of the controller are preferred. Among
these methods, the networked predictive control scheme is
considerably effective, since it can actively compensate for
the transmission delays and consecutive packet dropouts (Sun
etal., 2014).

While there are numerous approaches that have been reviewed
such as fuzzy, predictive, event-triggered and robust control, the
Proportional Integral Derivative (PID) control has received the
most attention in the history of process control. There are some
networked PID control methods to compensate for delays and
dropouts. For instance, Dasgupta et al. (2015) addressed the
closed-loop stability of the system under time-varying delays
and dropouts with a discrete PID controller. WNCS applica-
tions are cited by Abdullah et al. (2016); Blevins et al. (2014)
and Hassan et al. (2017).
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Motivated by the optimality of the predictive control solution
and the simplicity and flexibility of the PID control, it is
beneficial to apply the predictive approach to the PID control
loops and adapt them to the network communication. Very
few studies have been focused on predictive control algorithms
with PID structures that can effectively compensate dropouts.
For example, Miklovi¢ovd and Mrosko (2012) addressed the
compensation of control dropouts using Generalised Predictive
Control (GPC) and pole placement structure to design a PID
controller. Hassan et al. (2016) presented a predictive WNCS
to compensate variable delays and disturbance, where a Smith
predictor is combined with PID control. A similar solution is
postulated by Wu et al. (2016) to compensate random delays
and dropouts.

In this paper, a new predictive PID controller with similar
properties to MBPC is developed to compensate dropouts in
WNCS. A quadratic programming problem optimises a MBPC
cost function to find the optimal PID gains at every sampling
time. The constraint handling is included to guarantee the loop
stability to the controller limitations. The problem of the occu-
rrence of dropouts from sensor to controller is compensated
by combining the controller with a Kalman Filter (KF). The
measured output y(k) is replaced with the Kalman estimation
Yo (k) allowing the controller to receive information of the pro-
cess even in the presence of dropouts. To compensate conse-
cutive dropouts from controller to actuator, predictions of the
control signal are calculated and saved in the actuator for the
next sampling instant.

In comparison with the above PID approaches, where the loss
of information is generally assumed only in one direction, the
new predictive PID controller has the advantage of compen-
sating both communication ways. It also provides an innovative
and reliable design for WNCS where stability robustness to
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Figure 1. Diagram of predictive PID controller structure

variations of the system’s gain and poles can be accomodated.
Moreover, it compensates for a high incidence of dropouts and
at the same time satisfies input constraints and rejects distur-
bance in WNCS, which have not yet been addressed in the
revised literature.

This paper is structured as follows. Section 2 introduces the
MBPC scheme. The predictive PID controller is derived in Sec-
tion 3. A compensator of dropouts from controller to actuator
is studied in Section 4. A Kalman filter and a compensator
for consecutive sensor packet dropouts have been added to the
control scheme in Section 5. Sections 6 and 7 include several
experiments to show the performance and robustness of the
controller. Finally, conclusions and future research work are
presented in Section 8.

1. PRELIMINARIES
1.1 Predictive PID implementation

The proposed control scheme is presented by the block diagram
depicted in Fig. 1. The controller signal is u, y stands for
process output, e is the error and r is the reference signal.
The controlled plant is G, (z). The proposed framework is for
a class of linear, discrete-time, constrained process. A WNCS
whose sensor and control information is transported over a
wireless network is considered. The dropouts from sensor to
controller and from controller to actuator are represented as
dpsc and dpeq, respectively. A quadratic programming problem
optimises a MBPC criterion to find the optimal PID gains
at every sampling time. The constraint handling is presented
to stop input saturation. The measured output y, is switched
to the Kalman filter estimation y, allowing the controller to
always have information of the process even in the presence
of dropouts. Predictions of the control signal are calculated and
applied accordingly to compensate consecutive dropouts from
controller to actuator.

1.2 Network constraints

A Wireless Local Area Network (WLAN) is selected in this
study. Due to collisions or congestion in the channel, the system
has to tolerate dropouts. In this paper, the percentage of drop-
outs and delays are assumed to be bounded. Also, a maximum
number of consecutive dropouts has been investigated ¥, as
well as a different percentage of dropouts.
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2. THE MBPC METHOD

The MBPC algorithm seeks a set of optimal control signals that
minimises the following quadratic cost function Camacho and

Bordons (2007):
N N,
=Y Bk+i) —rk+ )P+ Y AlAutk+j—1)7 (1)
J=N J=Ni

where N; and N are positive scalars indicating the initial and
final predictive horizons. A is a constant weight used to penalise
the control effort. N, is the control horizon. The future reference
trajectory is r(k+ j) and has been assumed to be known. The
control objective is to minimise the cost function to compute
the future control signals that guaranties that the future process
output y(k + j) follows the future reference r(k + j). Meantime
it assures that the control signal is penalized as well.

To optimise the performance, appropriate horizons and an accu-
rate model are required. To find the prediction of process output
$(k+ j), a linear SISO plant is described using the Controlled
Auto Regressive and Integrated Moving-Average (CARIMA)
model:

Alg " )y(k) =g “Blg u(k—1)+C(g )E(k)/A ()
where y(k) and u(k) are the process output and the control
input, respectively. The process delay is d. A discrete-time
setting is assumed and the current time is labelled as time
instant k. A, B and C are polynomials function of the backwards
shift operator q’l with order n,,n, and n., respectively; such
that:

Alg ) =1+ag " +ag >+ +anqg "

Blg ) =bo+big " +bog P+ Abyg ™ (3)

Clg ) =coterqg " +eqg >+ teng ™
The model represents the uncertainty of random disturbances in
the process. & (k) is a zero mean white noise, and A =1—¢g~!
is a difference operator, indicating the difference between the
current time point and the previous time point. The proposed
model is more appropriate in industrial applications where
disturbances are non-stationary. For simplicity, C is chosen as
one in the following analysis. Next, a Diophantine equation is
used to find the output predictions:

1=E;(¢")M(q ) +q Fi(q") @
where E; and F; are polynomials. Multiplying (2) by AE;(g~')g’
gives:
AA(g DE (g )9k +)) = Ej(q Bl )Aulk+j—d 1)
+Ej(qg ) (k+ )
)
The best estimation of the future disturbance is achieved by
selecting & ( + k) = 0. Substituting A(g~)E;(¢~") from (4) in
(5), it results:
[1=q7/Fi(q7 )] 5(k+j) = Ej(q~")B(g~)Aulk+j—d —(16))
Simplifying results in:
S(k+J) = Filq " )y(k) +Ej(q")Blg™)Aulk+j—d — 1)(7)

(d+j-1)

where
Ei(q7") =earjotearjng '+ tearjji1q
Fi(q ") = favjo+ farjaa "+ + farjneg ™
Define G; = E;(q~')B(g™"), then (7) can be expressed as:
Ik+j) =Fi(q y(k)+Gi(g Aulk+j—-d—1)  ®)
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Applying the last result to (1), the cost function J is formulated
as the following quadratic problem:

J= (Gu+Fy—r)T(Gu+Fy—r)+luTu 9)

where
r=[r(k+1) r(k+2) rk+N)J"
y=[k+1) $k+2) k4N
u=[Au(k) Au(k+1) Au(k+N, = 1)]"
Fui(q ) g 0 -0
L I
Fh+qu7]) &‘* g&’z - éo

For simplicity of notation, it is assumed that d = O in the
equations above. The quadratic cost function is minimised by
solving VJ = 0. Note that the optimal input solution Au(k+ j —
1) =0 for j > 1. The control horizon has been selected as one
because the PID law only computes Au(k).

3. THE DESIGN OF THE PREDICTIVE PID
CONTROLLER

3.1 The PID

The velocity form of the PID controller with sampling time #;
is considered:

Au(k) = kple(k) —e(k—1)] + kitse(k)+

k 10
t—d[e(k)—Ze(k—l)—i—e(k—Z)} (19)
The matrix representation is:
Au(k) =K e(k) (11)
where e(k) is the vector of control errors:
e(k) =[e(k) e(k—1) e(k—2)]" (12)
The vector of gains K is defined as:
k ke ko'
K= |ky+kit,+-< —k, —27”’ =k k k)T (13)
N s S

The PID controller gains must be positive scalars: k, > 0, k; >
0, kg > 0. Therefore, it is easy to see that the vector of gains K
must fulfil the linear inequality constraints:

ki+ky+ks >0, ky+2k3 <O,

ks >0 (14)

3.2 The predictive PID controller

The PID predictive controller is obtained by combining the
MBPC and PID control laws. The purpose of the design is to
compute the PID gains in such a way that the control signal is
as close as possible to the MBPC signal. First, by simplifying
(9) yields:

J(K) =u"(GTG + Al u+u"2GT (Fy —r)
Replacing Au from (11) leads to:
J(K) = e(k)"K]"(G"G +AD)e(k) 'K + [e(k) "K]"2G" (Fy — 1)

(16)
This is equivalent to:

J(K) = K" e(k) (G"G+ ADe(k)" K+ K" 2e(k) G™(Fy —r)
(17)

15)
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The new algorithm will be carried out by minimising the cost
function respect to the PID controller gains K:

AUgons = mlénJ(K,y) (18)

where Auc,,;s is the constrained optimal input at time instant k.
It follows directly from (17) that the PID gains can be found by
solving the following quadratic program:

1
EKTHK+fTK
a(k) K < b(k)

e (19)
s.t.
where
H=2(G"G +Al)e(k)e(k)T
f=2GT(Fy —r)e(k)
The constraints of (19) will guarantee the contributions of con-
trol input and rate input are applied according to the controller
limitations. a(k) depends on the past values of the error and
b(k) on the upper and lower limits on the control input and rate
input. The design is provided in the next section. The control
law can be rewritten from (11) as:

Au(k) = K(k)e(k)

(20)

2n

The Optimisation Toolbox of Matlab is selected to solve the
problem and find the PID gains. The optimisation problem has
been set using the command quadprog(H, f,a,b), where H, f
have been stated in (20) and a, b are the constraint matrices
of the linear inequality. The interior-point-convex algorithm
is used. The solver tries to find the optimal point based on
the Karush-Kuhn-Tucker (KKT) conditions, where the gradient
must be zero at the minimum and take constraints into account.

It is important to stress that the vector of PID gains will change
at every time instant k. As a consequence, the proposed predic-
tive PID is time-varying and it will be optimised for a bounded
percentage of dropouts. The advantage of the predictive PID is
that it improves the traditional PID performance by equating
its control signal with the MBPC control signal. Since the
gains are varying every sampling time, the performance of the
PID controller is as good as the MBPC controller. Moreover,
the control signal along the input steps changes smoothly, as
demonstrated in Section 6.

3.3 Constraints for the control input and control rate input

To introduce the constraint handling, the predictive PID control
subject linear constraints is solved:

— Attin < Au(k) < Athaxs  —Umin < u(k) < Umax (22)
Using (13) the predictive PID control law in equation (21) can
be defined as:

2) (23)

Au(k) =
Hence, by noticing that Au = u(k) 1), the constraints
can be written as:

— Auin < k1e(k) +hkpe(k—1)+kye(k—2) < Ayay

kle(k)+kge(k— 1)+k3e(k—
—u(k—

—Upin—ulk—1) < kje(k)+kye(k—1)+kze(k—2)
< gy —u(k—1)
By combining (14) with the previous result, the final constraint
matrix is found:

(24)

0 1 2 —€
0 0 -1 0
—1 —1 —1 ki —&
e(k) elk—1) ek—2) ||k| < Atygy (25)
—e(k) —e(k—1) —e(k—2)] |k3 —Apin
e(k) e(k—1) e(k—2) Umax — u(k—1)
—e(k) —e(k—1) —e(k—2) —Upin +u(k—1)
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where € is a small positive scalar. The constraints should
be fulfilled for every Au;(k), for j=1,...,N — 1. The final
constraint matrix in (25) has the form a(k) K < b(k) previously
defined in the optimisation problem proposed in (19).

4. DROPOUTS FROM CONTROLLER TO ACTUATOR
COMPENSATION

To compensate dropouts from controller to actuator, predictions
of the control signal are calculated. First, from (20) the matrix
G is computed instead of G:

G1=G(1:N,j) (26)
where j stands for columns of matrix G and Ny < j < N.
Therefore, the quadratic program computes N predictions of
the control signal Au(k) using the coefficients of j —th column
of matrix G. During a successful transmission from controller
to actuator, the controller inputs are saved in the actuator for
the next sampling instant. At time k, a dropouts detector at
the actuator location indicates if the new control signal is not
received and applies the next prediction u (k) to compensate the
dropout. If there is not saved predictions, the actuator arbitrarily
applies the initial condition uy = 0. Note, that it has been
assumed that some computational and buffering resources are
available at the actuator.

Notably, in the proposed algorithm the controller has not know-
ledge of the control input that the actuator applies. However,
this is not a limitation since it has been demonstrated that
acknowledgements from the actuator to the controller do not
improve the stability of the networked predictive control (see
Gupta and Martins (2010) and the references therein).

In the case of consecutive dropouts, the maximum number of
consecutive dropouts, ¥,y s selected to match the prediction
horizon N. Thus, the “smart” actuator can determine the occu-
rrence of consecutive dropouts and apply the past predictions
until either the condition is over or ¥, has been reached. For
this end, a consecutive dropouts detector has been created. It
consists of an index, m, that counts the number of consecutive
dropouts and it is reset every time the information is available.
To obtain 7, the WNCS was implemented in the simulator
and the number of consecutive dropouts was measured for
variations of the percentages of dropouts from 25% to 80%.
A maximum value of ¥, = 30 was selected since it covered
the maximum number of consecutive dropouts.

5. DROPOUTS FROM SENSOR TO CONTROLLER
COMPENSATION

The occurrence of dropouts during the transmission from the
sensor to the controller results in an open-loop system which
degrades the reliability of the WNCS. To solve this problem a
KF is proposed to estimate J,(k). In the presence of dropouts,
only the traditional equations for estimation (prediction) of
the KF are computed. Once the information is available the
measurement (update) equations are calculated. The KF gives
an estimation as follows:

F(k+1) = AZ(k) + Bu(k) + Ky (k) [y(k) = Fe (k)]

o R 27)
Ve (k) = Cx(k)
Ky (k) represents the filter gain that is calculated using a set of
recursive equations:

K (k) = P(k)CT[CP(k)CT +R]™! (28)
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Figure 2. System outputs for predictive PID and MBPC

where R is the covariance of the measurement noise and P(k) is
the covariance of estimation error that is computed as follows:

P(k) = P(k)— P(k)CT[CP(k)CT +R]"'CP(k)  (29)
and that can be updated as:
P(k+1)=AP(k)AT + BOB" (30)

where Q is the covariance of the process noise.

The filter gain is computed by selecting appropriate values for
Q and R.

6. SIMULATION STUDIES
6.1 Numerical example 1: Non-minimum phase process

Consider the following non-minimum phase process with dead
time and sampling time #; = 1 s:

—0.26785(z—1.292) 73 a1
(z—0.6065)(z — 0.006738)

The predictive algorithm is implemented and simulated using
the TrueTime network configured for 802.11b Wireless Local
Area Network (WLAN), with a data rate of 800000 bits/s. The
minimum frame size has been selected as 272 bits (see Chacén-
Vasquez (2017) for more details).

Gp (z) =

As explained before, the prediction horizon is N = 30 and the
control horizon N, = 1. The closed-loop stability is achieved by
selecting A = 25. Control input constraints have been assumed
as Upmgy = 10, Ui, = —5 and the rate input Auy,,, = 10. A
step disturbance of magnitude 1.1 is introduced at time t =
450s to test the robustness of the design. The results have
been compared with the solutions obtained by the classical
MBPC with constraints. Fig. 2 shows the system outputs and
constrained controller inputs of predictive PID and MBPC for
step changes in reference signal (dashed line). The predictive
PID shows almost the same behaviour than MBPC as it is
expected. The reference tracking and the disturbance rejection
are achieved. Note that the input constraints (dotted line) are
satisfied. However, further tests shown this leads to a slower
rising time compared to the case without constraints.

The percentage and occurrence of dropouts for the simula-
tion are depicted in Fig. 3. A variable d,(k) € [0,1] indi-
cates if the packet containing the feedback signal y(k) is re-
ceived (dps (k) = 0) or if it is dropped (dpsc(k) = 1). Similarly,
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Figure 4. KF estimation for constrained predictive PID

dropouts from the controller to the actuator are represented as
(dpca(k) = 1) and (dpca(k) = 0) if there is no dropouts. Fig.
4 shows that the KF output estimation is close to the process
output. Therefore, when a dropout from sensor to controller
occurs, the KF provides an accurate estimate of the process
output.

The control system is stable and works within the requirements
for the entire drop of sensor and controller packets. Further tests
showed that the percentages of dropouts could be increased up
to P, = 84% which is the threshold to ensure the closed-
loop stability. The performance of predictive PID and MBPC
responses for servo and regulatory responses has been assessed
using the Integral of Absolute Error (IAE) criterion. The results
are summary in the Table 1. The indexes values demonstrate
that the predictive PID method performs as good as the MBPC
scheme.

Table 1. IAE values for step responses

Controller Jr Jy
Predictive PID  211.8  7.988
MBPC 205 7.989

7. ROBUSTNESS RESULTS

Since the PID predictive controller is model based, the effects
of model uncertainties and dropouts on NCS’s stability require
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Figure 5. Comparison of step responses with dropouts varia-
tions

further examination. Therefore, the stability of the method
is investigated here studying the closed-loop responses for
variations of the process model parameters and the percentage
of dropouts. The following process is selected for this analysis:

G,() = 0.06347z7" +0.048077 >
P T T 13237 140.43467 2
The controller settings are the same than the previous example.

A step of magnitude one is selected. Control constraints have
been chosen as u,,,x = 1, Ui = 0 and Au,y = 10.

(32)

Study of stability for variations of percentage of dropouts
The percentages of dropouts from sensor to controller and from
controller to actuator are varied to demonstrate the robustness
of the design. The step responses for different scenarios are
shown in Fig. 5. The dashed lines show that when the proba-
bility of loss is increased from 0% to 65%, the responses are
similar. Nevertheless, after 20 s, the control input for a 65% of
packet loss presents small oscillations. If the probability keeps
increasing, the oscillations continue to grow until the output is
unstable. The dotted line shows that for a percentage of drop-
outs of 84%, the performance of the control system decreases
considerably. Further validations report this percentage is the
threshold to ensure the closed-loop stability.

Study of stability for variations of the gain

Fig. 6 shows that even with the constraints, the closed-loop
system is stable if the gain is increased and reduced to +35% of
the model process gain. Although the process presented a small
oscillation and slower rising time, zero steady error and a good
tracking performance are accomplished when the process gain
changes within the given percentages.

Study of stability for variations of the poles

Fig. 7 shows the closed-loop responses for variations in the
non-dominant pole called p;. Note that, the effect of varying
the p, is similar since the poles are closer to each other. It
is evident from the plot, that pole variations of +35% are
permitted without making the closed-loop system unstable.
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7.1 Discussion

The performance stability of the control scheme is satisfactory
for the selected prediction horizon. Further tests showed that a
larger N deteriorate the performance because the errors in the
prediction are bigger for long prediction horizon. The predic-
tive PID controller and MBPC show similar performances; in
some cases, the predictive PID controller performs better than
the MBPC for higher percentages of dropouts. The constraint
handling produces a reduction of the performance, but satis-
factory results are still found. In most cases, a faster weight
A can improve the sluggish response of the control signal.
However, there are scenarios where the control strategy can not
stabilise faster responses with high percentages of dropouts.
The new predictive PID controller offers a good performance
to model uncertainty. Also, this methodology can compensate
systems subject to dropouts within a large range of variations.
The fact that the closed-loop system is robust to process and
dropouts variations obeys to the optimisation tool used to obtain
the predictive PID controller gains and the accurate estimation
of the KF. The approach successfully minimises the error by
changing the controller gains at every sampling time and allo-
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wing a maximum system parameters variation and percentage
of dropouts.

8. CONCLUSIONS

A new predictive PID controller was presented to compensate
dropouts in WNCS. The results showed that the approach
successfully solved two main problems in the WNCS: missing
sensor measurements and controller actions. The problem of
dropouts from sensor to controller was compensated by com-
bining the controller with a KF. The predictions of the con-
trol signal were calculated to compensate consecutive dropouts
from controller to actuator. The proposed method dealt with
long dropouts and high consecutive occurrence. The perfor-
mance analysis showed that the predictive PID method per-
forms as good as the MBPC scheme. Also, the control system
meets the stability requirements in the presence of disturbance,
model uncertainties and input constraints. In future works, this
approach will be extended to complex WNCS with MIMO
systems and decentralised control whose results can be tested
in an industrial context.
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