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Abstract: This paper proposes fractional order autotuner controller for the benchmark refrigeration system. The 
method is an extension of a previously presented autotuning principle and produces a robust fractional 
order PI controller to gain variations. Fractional order PI controllers are generalizations of the integer 
order PI controllers, which have a supplementary parameter that is usually used to enhance the robustness 
of the closed loop system. The method is not restricted to robustness to gain variations and can be 
adapted to obtain robust fractional order controllers to time delay or time constant variations, for 
example. The autotuning method presented in this paper has several advantages such as the need for a 
single sine test to be applied to the process to extract the necessary information and the elimination of 
complex nonlinear equations in the tuning procedure for fractional order controllers. The results obtained 
on the benchmark system indicate the method has high potential for real-life applications. 
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1. INTRODUCTION 

Using the emerging tools from fractional calculus and 
acknowledged success of fractional order controllers in 
practice (Vilanova and Visioli, 2012), this paper presents a 
solution for the control of the benchmark system proposed at 
the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control (PID18), held in Ghent, Belgium. 
The originality of the approach is to use a simple test and 
detect automatically controller parameters that make the 
closed loop system robust to gain variations. The robustness 
can be addressed also in terms of time delay or time constants 
variations by modifying the tuning rules.  There is no need to 
determine the process model and the complicated set of 
nonlinear equations involved in fractional order controller 
tuning is completely eliminated.  

A few autotuning methods have been developed so far for 
fractional order controllers. In (Chen et al., 2004, Chen and 
Moore, 2005) the so-called phase shaper is designed, 
consisting in an integer order PID combined with a fractional 
order integrator or differentiator sα, with αϵ(-1,1). The design  
of the phase shaper is based on the achieving closed loop 
robustness to gain variations. A relay test is used to tune 
fractional order controllers in (Monje et al., 2008). The 
design produces first a fractional order PI (FO-PI) controller, 
and then a fractional order PD controller with a filter. In this 
case, the performance specifications refer to iso-damping, 
gain crossover frequency and phase margin. The Ziegler-
Nichols tuning procedure is used in (Yeroglu et al., 2009) to 

determine the proportional and integral gains of the fractional 
order controller, then the Åström-Hägglund method (Åström 
and Hägglund, 1984;2004) is used to compute the initial 
value of the derivative gain. The performance specifications 
refer to gain crossover frequency, phase margin and iso-
damping property and an optimization procedure is required 
to solve the resulting nonlinear equations. In (De Keyser et 
al., 2016) the same three performance specifications are used 
in an autotuning procedure to determine either fractional 
order PI or PD controllers for stable, integer order or 
fractional order processes. A simple sine test is used to 
determine the required information for the tuning: the process 
magnitude, phase and phase slope at the gain crossover 
frequency. Using this information, either a graphical 
approach or an optimization routine is required to solve the 
resulting system of nonlinear equations.  

In this paper, a previously designed autotuning method for 
integer order PID controllers (the KC autotuner) is extended 
to fractional order controllers and used to tune the controllers 
for the benchmark process. In the KC autotuning method (De 
Keyser et al., 2017a), a ‘forbidden region’ that includes the -1 
point in the Nyquist plane is defined. To determine the 
forbidden region two design constraints referring to the phase 
and gain margins are used. The core idea of the KC autotuner 
is that the integer order PID parameters are computed such 
that the loop frequency response touches the border of the 
forbidden region. The extension of this KC autotuner to 
fractional order controllers (the FO-KC autotuner) ensures 
that a certain open loop gain crossover frequency, phase 
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margin and iso-damping are obtained. In this case, the gain 
crossover frequency and phase margin specifications are used 
to compute the forbidden region. Finally, the optimal 
fractional order PI controller parameters are determined such 
that the slope-difference between the forbidden region border 
and the loop frequency response is minimal (i.e. tangent). A 
FO-PI controller is preferred instead of its integer order 
equivalent due to the improved closed loop dynamics 
achievable with the fractional order controllers (Monje et al., 
2010). 

2. THE FRACTIONAL ORDER (KC) AUTOTUNER 

The original version of the (integer-order) KC autotuner has 
been presented in (De Keyser et al., 2017a). The main idea is 
to define a forbidden region, represented by a circle including 
the -1 point in the Nyquist plane. The center and radius of 
this circular region are computed according to two design 
constraints: the gain margin (GM) and the phase margin 
(PM). In the autotuning method, a (minimum) GM=2 and a 
(minimum) PM=45o are selected. The robust PID controller is 
determined as the controller that makes the slope-difference 
between the circle border and the loop L(s)=P(s)C(s) 
frequency response minimum, with P(s) – the process 
transfer function and C(s) – the controller transfer function.  
Fig. 1 shows the forbidden region and the loop frequency 
response in a general case. 

 
Figure 1. The loop frequency response (blue line) and the 
‘forbidden region’ (red circle) 
 
In the KC autotuning procedure, any user specified frequency 
ω  can be used used to tune the PID controller. In this case, 
the loop frequency response point L(jω )=P(jω ).C(jω ) is 
defined as a point on the circular region border. Its derivative, 
as the slope of the loop frequency response, needs to be 
evaluated as well. For this, the process frequency response, 
P(jω ) and its derivative, have to be estimated via a simple 
sine test (De Keyser et al., 2017b).  

The main idea of the KC autotuner is to minimize the 
difference between the slope of the loop frequency reponse 
and the slope of the region border at the user specified 
frequency ω . Obviously, as indicated in Fig. 1, the slope of 
the region border depends on the angle α. Then, the 

minimization problem can be simply solved with a single for-
loop where α varies from 0 to αmax in 1° steps. The set of 
equations for determining the point of tangent between the 
forbidden region and the Nyquist curve is given in (De 
Keyser et al., 2017a).  

The FO-KC approach attempts to determine the parameters 
of the fractional order controllers. In this paper, fractional 
order PI controllers will be designed, described by the 
following transfer function: 

CPI ( s )= kp 1+ kis
−λ( )             (1) 

where kp and ki are the proportional and integral gains and λ 
is the fractional order, with λmin< λ<2. Based on the iso-
damping property and certain phase margin PM requirement, 
the forbidden region center, C, and its radius, R, are 
determined. Figure 2 illustrates the forbidden region in the 
case of the FO-KC autotuner.  

 

Figure 2. Computation of the forbidden region center and 
radius for the FO-KC autotuner 

Using some trigonometric relations in Fig. 2, the following 
results are obtained: 

C = 1
cos PM( )

 , R = C2 −1            (2) 

α = 90o − PM              (3) 

and the optimization angle α of the KC autotuner is now 
fixed. The design of the fractional order PI controller using 
the FO-KC method is defined as a minimization problem 
with the following flowchart steps. 

1. For a set of performance specifications referring to 
phase margin (PM and iso-damping, compute the 
forbidden region circle and radius using (2).  

2. Compute the slope of the forbidden region d Im
d Re

 

based on specified PM. 
3. Perform a single sine test on the process with 

frequency equal to the gain crossover frequency ωc, 
defined as a third performance specification, and 
determine the process frequency response P(jωc) and 
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the slope of its frequency response dP( jω )
dω ω=ωc

 

(see for details (De Keyser et al., 2017b).  
4. Using the performance specifications determine the 

open loop frequency response L(jωc) at the gain 
crossover frequency, considering the modulus 
ML(jωc)=1  and phase φL=-180o+PM.  

The frequency response of the fractional order PI controller 
can be easily computed: 

C( jωc )=
L( jωc )
P( jωc )

= a+ jb .                 (4) 

The following relations hold: 

a = kp 1+ kiω
−λ cos λπ

2
⎛

⎝
⎜

⎞

⎠
⎟  and b = −kpkiω

−λ sin λπ
2

.          (5) 

From (5), the controller parameters follow as: 

ki = −
b

ω−λx
 and kp =

1

sin λπ
2

x
               (6) 

with x = a sin λπ
2
+bcos λπ

2
. For a and b known, the 

controller parameters in (6) depend solely on λ. 

5. Then, for different values of λ, in small increments 
in the range λmin<λ<2, the gains kp and ki can be 
computed based on (6). The minimum value λmin is 
computed according to (Muresan et al., 2017). 

Once the controller parameters are determined, compute the 
slope of the fractional order PI controller frequency response 
dC( jω )

dω ω=ωc

, either analytically or numerically. Compute 

the derivative of the open loop frequency response at the gain 
crossover frequency: 
 
dL( jω )

dω ω=ωc

= P jωc( ) dC( jω )
dω ω=ωc

+C jωc( ) dP( jω )
dω ω=ωc

 

      (7) 
and determine the real and imaginary parts: 

dL jω( )
dω

ω=ωc

=
dℜL
dω

ω=ωc

+ j
dℑL
dω

ω=ωc

.          (8) 

Next, the slope of the loop frequency response in the Nyquist 

plane can be computed as the ratio: dℑL
dℜL ω=ωc

. 

6. Compute d Im
d Re

−
dℑL
dℜL ωc

 for all values of the 

fractional order λ, in small increments in the range 

λmin< λ<2 and select the minimum value. This then 
results in the optimal FO-PI controller parameters. 
 

4. APPLICATION TO THE BENCHMARK SYSTEM 

The benchmark system is described in detail in (Bejarano et 
al, 2017). The schematic of the process is given in Fig. 3, 
where the manipulated variables are the compressor speed N 
and the expansion valve opening Av, respectively the 
controlled signals are the outlet temperature of the evaporator 
secondary flux Te,sec,out and the degree of superheating TSH. 
The remaining signals, such as mass flow !me,sec  and inlet 
temperature Te,sec,in of the evaporator secondary flux, mass 
flow !mc,sec  and the inlet temperature Tc,sec,in of the condenser 
secondary flux are considered as disturbances. Additional 
disturbances are represented by the inlet pressure of the 
condenser secondary flux Pc,sec,in, inlet pressure of the 
evaporator secondary flux Pe,sec,in  and compressor 
surroundings temperature Tsurr. This 2x2 system has been 
identified by applying Pseudo Random Binary Signals 
(PRBS) to one input of the system, while keeping the other 
inputs constant at the initial operating point, namely 48.79% 
expansion valve opening and 36.45Hz compressor speed. The 
2x2 system is defined by u1=N, u2=Av, y1= Te,sec,out and y2=TSH 
with the identified transfer functions as: 

 G11( s )= −0.5658s−0.01116
s2 +14.87s+0.5584

                   (9) 

G12( s )= −0.006655s−0.0005089
s2 +9.931s+0.2901

         (10) 

G21( s )= −2.821s−0.8192
s2 +6.576s+0.2569

         (11) 

G22( s )= 0.9626s+0.02772
s2 +5.928s+0.184

.                      (12) 

We propose to steady state decouple the 2x2 system, using 
the inverse of the steady state matrix: 

D = −17.5 −0.204
−370.6 2.32

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ .          (13) 

This implies that the diagonal elements of the decoupled 
process are approximated with: 

Gd11( s )= 12.06s2 +0.7963s+0.01434
s3 +13.23s2 +0.8726s+0.01434

        (14) 

Gd 22( s )= 2.81s+0.2395
s2 +6.055s+0.2395

         (15) 

approximated with a fit of 99.7% and 99.5%, respectively (in 
absence of noise). For these two transfer functions, two 
fractional order PI (FO-PI) controllers are designed such as to 
ensure iso-damping, a phase margin of PM=70o in both cases 
and a gain crossover frequency ωc1=5 rad/s and ωc2=20 rad/s, 
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respectively. An increased value for the PM specification 
ensures a low overshoot and a stable system. The gain 
crossover frequencies have been selected similarly to the 
decentralized benchmark controller (Bejarano et al., 2017) 
and then gradually increased for a faster settling time. 

 

Figure 3. Refrigeration system based on vapor compression 

The forbidden region center and radius are computed as: 

C = 1
cos PM( )

= 2.92  , R = C2 −1 = 2.74        (16) 

and the angle α is: 

α = 90o − PM = 20o
.          (17) 

The slope of the forbidden region is given by: 

d Im
d Re

= −
Re α( )+C

Im α( )
=

cos α( )
sin α( )

= 2.74 .        (18) 

For the first loop, the sine test with frequency equal to ωc1= 5 
rad/s, yields the process frequency response and the slope of 
the process frequency response: 

Gd11(jωc1) = 0.8- 0.3.j          (19) 

dGd11( jω )
dω

ω=ωc1

= -0.04 -0.045j .                        (20) 

The open loop frequency response is:  
 

L( jωc1 )= −0.342−0.939 j .                 (21) 

And the frequency response of the FO- PI controller is: 

C( jωc1 )= 0.016 - 1.167j                  (22) 

with a=0.016 and b=-1.167. The minimum value for the 
fractional order is computed according to previous research 
results (Muresan et al., 2017): 

λmin = 0.99 .                    (23) 

Now all ingredients are present for the tuning procedure at 
step 5 in the flowchart. For each λ in the range λmin< λ<2, the 
FO- PI proportional and integral gains are computed based on 

(6), then the dC( jω )
dω ω=ωc

 is estimated, allowing for the final 

computation of the derivative of the open loop frequency 

response dL( jω )
dω ω=ωc

 and its slope dℑL
dℜL ω=ωc

. The method 

searches through all values of the fractional order λ and 

computes the difference d Im
d Re

−
dℑL
dℜL ωc

 with d Im
d Re

=2.74, 

as computed in (18). The minimum difference  is obtained for 
a fractional order λ=1.1711, yielding a proportional gain 
kp=0.34 and an integral gain ki=23.6.  

For the second loop, the sine test with frequency equal to 
ωc2= 20 rad/s, yields the process frequency response and the 
slope of the process frequency response: 

Gd22(jωc2) = 0.038-0.0129.j          (24) 

dGd 22( jω )
dω

ω=ωc2

= −0.0035−0.0053⋅ j  .       (25) 

The open loop frequency response remains the same, as for 
the first loop, since the same performance requirements are 
addressed:  
 
L( jωc2 )= −0.342−0.939 j .                         (26) 

The frequency response of the FO- PI controller for the 
second loop is: 

C( jωc2 )= 5.96− 4.43⋅ j                  (27) 

with a=5.96 and b=-4.43. The minimum value for the 
fractional order is: 

λmin = 0.4067 .                       (28) 

A minimum value for the slope difference d Im
d Re

−
dℑL
dℜL ωc

 

is obtained for a fractional order λ=0.7767, with the 
proportional gain kp=4.34 and the integral gain ki=11.13.  

These FO-PI controllers are now approximated in an integer 
order form of order 5, for the purpose of simulation in closed 
loop (De Keyser et al., 2018). Their equivalent forms are 
tested for reference tracking and disturbance rejection. The 
output signals are represented in Fig. 4, and the 
corresponding input signals are shown in Fig. 5. There is a 
slight overshoot and a relatively fast settling time, combined 
with a decreased interaction between the two control loops. 
The input signals reach acceptable values. The associated 
condenser and evaporator pressures are pictured in Fig.6, 
while Fig. 7 shows the thermal power at each component and 
refrigerant mass flow. The compressor efficiency and 
coefficient of performance are presented in Fig. 8. 
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A qualitative comparison with the benchmark controller 
(Bejarano et al., 2017) is presented in Figures 9-10, where 
Controller 1 stands for the multivariable PID benchmark 
controller and Controller 2 stands for the proposed control 
strategy. It is obvious that the designed controller provides 
better closed loop performance than the benchmark 
controller, reducing significantly the interaction between the 
control loops. The overshoot and the settling time are slightly 
larger. The quantitative comparison between the two control 
strategies is performed in terms of ratios of Integrated 
Absolute Error (RIAE), taking into account that both output 
signals should follow their respective references. The Ratio 
of Integrated Time multiplied Absolute Error (RITAE) is 
evaluated for the first controlled variable, taking into account 
that the simulation includes one sudden change in its 
reference. The other indices are the Ratios of Integrated Time 
multiplied Absolute Error (RITAE) for the second controlled 
variable, taking into account that the simulation includes 
three sudden changes in its reference, and the Ratios of 
Integrated Absolute Variation of Control signal (RIAVU) for 
the two manipulated variables. The results are included in 
Table 1. A combined index is also computed as the mean 
value of the eight individual indices using a weighting factor 
for each index. The quantitative results in Table I show that 
the proposed control strategy is overall a better choice than 
the multivariable PID benchmark controller. 

 

Figure 4. Closed loop response of the two output signals 

 

Figure 5. Corresponding input signals in closed loop 

 

 

Figure 6. Corresponding condenser and evaporator pressures 

 

Figure 7. Thermal power at each component and refrigerant 
mass flow 

 

Figure 8. Compressor efficiency and Coefficient of 
Performance: comparison between controllers 

4. CONCLUSIONS 

The quantitative results in Table 1 suggest that the proposed 
control strategy (Controller 2) improves the closed loop 
performance compared to the multivariable PID benchmark 
controller (Controller 1). Overall the combined index J shows 
that the proposed control strategy is a better choice for 
controlling the refrigeration system based on vapor 
compression. A quantitative comparison has been performed 
with the decentralized benchmark controller, with J=0.2782, 
thus the proposed control strategy is a valuable option for 
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controlling the benchmark process. The improved results are 
a direct consequence of the optimal tuning of a robust FO-PI 
controller using the FO-KC autotuning method. 

Index Value 
RIAE1(C2,C1) 0.3609 
RIAE2(C2,C1) 0.5935 
RITAE1(C2,C1,tc1,ts1) 0.0270 
RITAE2(C2,C1,tc2,ts2) 2.8161 
RITAE2(C2,C1,tc3,ts3) 1.6339 
RITAE2(C2,C1,tc4,ts4) 0.4625 
RIAVU1(C2,C1) 0.9270 
RIAVU2(C2,C1) 0.6868 
J(C2,C1) 0.7837 

Table 1. Quantitative comparison of the two controllers (C1- 
Controller 1, C2- Controller 2) 
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Figure 9. Closed loop response of the two output signals: 
qualitative comparison 
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Figure 10. Corresponding input signals in closed loop: 
qualitative comparison 
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