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Abstract: This study proposes a self-tuning PID controller design method based on a Kalman
filter. Recently, data-driven controller tuning methods that can directly tune control parameters
by closed-loop data without system models have been received much attention as convenient
tuning approaches. On the other hand, in parameter estimation problems, the Kalman filter
that can obtain high-precision estimation results has been applied in many research/industrial
area. In this paper, a data-driven PID parameters tuning problem that is derived based on a
PID control law is resolved as a Kalman filtering problem, and a self-tuning PID controller
based on the Kalman filter is proposed. The effectiveness of the proposed method is evaluated
by simulation and experimental examples.
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1. INTRODUCTION

A proportional-integral-derivative (PID) control (Visioli
(2006); Vilanova and Visioli (2012)) scheme has been
widely applied in the industrial world. PID parameters
tuning is very important because tuned PID parameters
strongly affect a control performance of a closed-loop
system. The most PID controller design scheme is model-
based controller design that is based on a mathematical
model of a controlled object. However, in recent decades,
data-driven controller design schemes represented by the
virtual reference feedback tuning (VRFT) (M.C.Campi
(2002)) and the fictitious reference iterative tuning (FRIT)
(Kaneko (2013)) has been received much attention. These
schemes can tune control parameters without any system
models by using one-shot operation data obtained by a
closed-loop system.

Within this context, a data-driven PID parameter tuning
method based on an extended output has been proposed
(see Ashida et al. (2016, 2017)), and the effectiveness of the
proposed method has been shown by simulation examples
and experimental results. According to the method, an
extended output which is obtained by a PID control law is
firstly defined, and PID parameters are tuned by solving
a minimization problem related to the extended output.
In this method, the problem can be solved by using one-
shot operating data, thus the method does not require any
system models. Moreover, the method can be applied the
least squares method to solve the minimization problem,
and it can easily extend to a data-driven self-tuning
controller by the recursive least squares (RLS) method.

On the other hand, lots of parameter estimation methods
have been proposed till this day. The Kalman filter is
well known as an effective method because the method
gives us good estimation results under noisy environ-

ments. The Kalman filter has been applied to many in-
dustrial/academical area such as aerospace systems, ve-
hicle systems, robots, power prediction, weather forecast
etc. (e.g. Jovanovic (2015)). Moreover, Kalman filter al-
gorithms for nonlinear systems have been studied. In the
Kalman filter, the Gauss distribution of system noise and
observation noise is assumed, and the optimal solution is
ensured by giving proper variances of these noises. Thus
it is expected to increase the performance of parameter
estimation by applying the Kalman filter to the above PID
parameter estimation problem. In this paper, a Kalman
filter based data-driven control parameter tuning approach
is proposed, and the effectiveness of the proposed method
is evaluated by simulation and experimental results.

The rest of this paper is organized as follows. In Section
2, it is explained how to derive an extended output form a
PID control law, and the relationship between the output
and a target tracking problem is explained. In Section
3, Kalman filtering problem is explained, and a PID
parameter estimation algorithm based on Kalman filter is
described. In Section 4, comparisons with control results
between RLS and the proposed method are shown by
simulation examples. Finally, Section 5 summarizes the
research findings.

2. EXTENDED OUTPUT DERIVATION AND
TARGET TRACKING PROBLEM

The following discrete velocity-type PID control law is
considered.

Δu(k) = KI(k)e(k)−KP (k)Δy(k)−KD(k)Δ2y(k). (1)

u(k) and y(k) are the plant input (the controller output)
and the plant output at time k [step]. e(k) expresses
the control error given by e(k) := r(k) − y(k), where
r(k) is the step-type target value. KP (k), KI(k), and
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KD(k) are the proportional gain, the integral gain, and
the derivative gain, respectively. Δ indicates the backward
difference operator given by Δ := 1 − z−1. Where z−1 is
the backward operator that has the following operation:
z−1y(k) = y(k − 1). By referencing the paper written by
Ashida et al. (2017), the following extended output φ(k)
is derived from Eq. (1) under the condition KI(k) �= 0.

r(k) = φ(k), (2)

φ(k) := a1(k)Δu(k) + a2(k){y(k)− y(k − 2)}
+ a3(k){y(k − 1)− y(k − 2)}+ y(k − 2). (3)

Moreover, there are the following relationships among
control parameters a1(k), a2(k), a3(k) and PID gains.

KP (k) =
2a2(k) + a3(k)− 2

a1(k)

KI(k) =
1

a1(k)

KD(k) =
1− a2(k)− a3(k)

a1(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (4)

An objective of controller design is making output follow to
the reference model output Gm(z−1)r(k). In other words,
the objective can be written as a minimization problem of
the following error ε(k).

ε(k) = y(k)−Gm(z−1)r(k). (5)

Where Gm(z−1) is the discrete-time transfer function of
the reference model given as follows.

Gm(z−1) =
z−1P (1)

P (z−1)
, (6)

P (z−1) = 1 + p1z
−1 + p2z

−2. (7)

Where,

p1 = −2 exp

(
− ρ

2μ

)
cos

(√
4μ− 1

2μ
ρ

)

p2 = exp

(
− ρ

μ

)

ρ := Ts/σ

μ := 0.25(1− δ) + 0.51δ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (8)

In the above equation, Ts [s] is the sampling interval. σ [s]
and δ (0 ≤ δ ≤ 2.0) indicate desired rise time and damping
property of a closed-loop system, respectively. The Eq. (5)
can be written as the following equation by utilizing the
relationship in Eq. (2).

ε(k) = y(k)−Gm(z−1)φ(k) (9)

= y(k)−Gm(z−1)y(k − 2)−Gm(z−1)φ̄(k). (10)

Where,

φ̄(k) = a1(k)Δu(k) + a2(k){y(k)− y(k − 2)}
+ a3(k){y(k − 1)− y(k − 2)}. (11)

In this paper, relation ships of Eqs. (10) and (11) will be
applied to a Kalman filtering problem explained in the
next section.

3. SELF-TUNING CONTROLLER DESIGN BASED
ON KALMAN FILTER

3.1 Kalman Filter

It is assumed that a system model can be given as the
following SISO state-space model.

x(k + 1) = A(k)x(k) + b(k){ũ(k) + ξv(t)} (12)

ỹ(k) = c(k)x(k) + ξw(t) (13)

ũ(k) and ỹ(k) are the input and the output of the state-
space model. x(k) ∈ �l×1 expresses the state variables
vector that has l elements. A ∈ �l×l, b ∈ �l×1, c ∈ �1×l

expresses the system matrix/vector. ξv(t) and ξw(t) are
the system noise and the observation noise, respectively,
and it is assumed that each noise is the independent white
Gaussian noise. Moreover, each noises’ mean and variances
are N(0, σ2

v) and N(0, σ2
w), respectively. The Kalman filter

is a filter that can give an algorithm to be obtained x∗(k)
which minimizes the following minimum mean square error
to the state-space system by using the observed data
{ỹ(k), k = 1, 2, . . . , N}.

x∗(k) = arg min
x̂(k)

J(x̂(k)), (14)

J(x̂(k)) = E[(x(k)− x̂(k))T (x(k)− x̂(k))]. (15)

Where x(k) indicates the true state variables vectors. In
the Kalman filter algorithm, the estimated state variables
are recursively updated by the following prediction step
and filtering step.

• Prediction step

x̂−(k) = A(k − 1)x̂(k − 1) + b(k)u(k − 1), (16)

P−(k) = A(k − 1)P (k − 1)AT (k − 1)

+ σ2
v(k − 1)b(k − 1)bT (k − 1). (17)

Where x̂−(k) and P−1(k) are the priori state esti-
mate and the priori estimate covariance, respectively.

• Filtering step

g(k) =
P−(k)c(k)

cT (k)P−(k)c(k) + σ2
w(k)

, (18)

x̂(k) = x̂−(k) + g(k)(ỹ(k)− c(k)T x̂−(k)), (19)

P (k) = (I − g(k)cT (k))P−(k). (20)

Where g(k) is the Kalman gain, (ỹ(k) − c(k)T x̂−(k)) in
Eq. (19) is called the innovation. x̂(k) is the posteriori state
estimate that is obtained by the priori state estimate, the
Kalman gain and the innovation. Moreover, P (k) is the
posteriori estimate covariance.

3.2 Proposed Method

A Kalman filtering problem related to the control param-
eter estimation problem in Section 2 can be formulated as
follows.

θ∗(k) = arg min
ˆθ(k)

J(θ̂(k)), (21)

J(θ̂(k)) = E[(θ(k)− θ̂(k))T (θ(k)− θ̂(k))]. (22)

Where θ(k) expresses ideal control parameters θ(k) =
[a1(k) a2(k) a3(k)]

T . A state-space for the control param-
eter estimation problem is introduced as follows.
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Fig. 1. Block diagram of proposed parameter estimator
based on Kalman filter.

θ(k + 1) = θ(k) + bξv(k), (23)

ỹ(k) = Gm(z−1)ψT (k)θ(k) + ξw(k). (24)

Where,

ỹ(k) = y(k)−Gm(z−1)y(k − 2), (25)

ψ(k) = [Δu(k) y(k)− y(k − 2) y(k − 1)− y(k − 2)].
(26)

By comparing with the above state space model to Eqs.
(12) and (13), the control parameter estimation problem
can be resolved as Kalman filtering problem under the
conditions A(k) = I ∈ �3×3, b(k) = [1 1 1]T and
c(k) = ψ(k). The block diagram of the proposed control
parameter estimation structure based on the Kalman filter
is shown in Fig. 1. The figure is shown that the tracking
error in Eq. (10) is utilized as the innovation in the Kalman
filter.

3.3 Control Parameter Estimation Algorithm

Firstly, the initial vales of the control parameters vector
θ(0) and the priori estimate covariance P (0) ∈ �3×3

are given. Note that the control parameter a1(0) must
satisfy the a1(0) �= 0. Secondly, the variances of the
system noise σ2

v and the observation noise σ2
w are given

as setting parameters. After the above preparations, the
control parameters at each time step are estimated by
following steps.

• Prediction step

θ̂
−
(k) = θ̂(k − 1), (27)

P−(k) = P (k − 1) + σ2
vbb

T . (28)

• Filtering step

g(k) =
P−(k)ψ(k)

ψT (k)P−(k)ψ(k) + σ2
w

, (29)

θ̂(k) = θ̂
−
(k) + g(k)ε̂(k), (30)

ε̂(k) = ỹ(k)−ψ(k)T θ̂
−
(k), (31)

P (k) = (I − g(k)ψT (k))P−(k). (32)

4. NUMERICAL EXAMPLE

The effectiveness of the proposed method is verified by
simulation examples. The following 2nd-order lag system
is considered as the controlled object.
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0 0.5 1 1.5 2
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10

20

30

u

Fig. 2. Control result obtained by RLSM.

G(s) =
Kω2

n

(1 + Ts)(s2 + 2ζωns+ ω2
n)

. (33)

In the simulation, the above system is discretized as the
following ARX model with the white Gaussian noise ξ(k)
discretized by Ts = 1 ms. The mean and the variance of
the noise are N(0, 1× 10−5).

A(z−1)y(k) = z−1B(z−1)u(k) + ξ(k). (34)

System parameters A(z−1) and B(z−1) are calculated by
the ’c2d’ command in MATLAB. In this simulation a
reference signal r(k) is given as follows.

r(k) =

{
100 (0 s ≤ t < 0.5 s, 1 ≤ t < 1.5 s)
150 (0.5 s ≤ t < 1 s, 1.5 s ≤ t < 2 s)

(35)

Where t indicates the time in continuous time domain.

Firstly, the fixed PID control gains were calculated based
on the pole-assignment method (Wakitani et al. (2011)).
Where, in order to uniquely determine the PID gains
by the pole-assignment method, the above system was
approximated by the following equation.

G′(s) :=
Kω2

n

s2 + 2ζωns+ ω2
n

(36)

Moreover, setting parameters of a reference modelGm(z−1)
that were required to calculate PID gains were set to
σ = 30 ms and δ = 0. The calculated PID gains are shown
below.

KP = 0.144, KI = 0.0109, KD = 1.93. (37)

The control result by using the above fixed PID gains are
shown in Fig. 2. The figure shows that the stable control
result can be obtained by using the controller. However,
the overshoot is observed every set point change.

Secondly, the recursive PID gain tuning algorithm by
RLS based on the extended output was applied in order
to compare to the proposed method. The initial control
parameters vector θ(0) were set as follows based on PID
gains in Eq. (37).

θ(0) = [91.34 190.4 − 365.6]T (38)

Moreover, the initial covariance matrix was set to P (0) =
diag [100 100 100]. The control result by the RLS is shown
in Fig. 3. The figure shows that the parameter estimation
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Fig. 3. Control result obtained by RLSM.
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Fig. 4. Control result obtained by proposed method.

is not executed appropriately.

Finally, the control result by the proposed method is
shown in Fig. 4 and Fig. 5. All initial values were set as
in RLS and the setting parameters in the Kalman filter
were set to σ2

v = 1× 10−5 and σ2
w = 1× 10−5. The figures

show that the improved control result compared with the
fixed PID controller is obtained by setting the estimated
variances appropriately.

5. CONCLUSIONS

In this research, the Kalman filter based self-tuning PID
controller was proposed. In the method, the extended
output and its error function were firstly derived from the
PID control law. Secondly, the PID parameter estimation
problem was resolved as a Kalman filtering problem. This
paper showed that the error function can be used as the
innovation in this estimation problem. The effectiveness of
the proposed method was evaluated by numerical results.
These results showed that the proposed method works well
when the variances of the noise are set properly. In other
words, the method has expanded application area of the
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Fig. 5. Trajectories of PID gains corresponding to Fig. 4.

proposed PID controller than RLS based one. Parameter
convergence condition and ensuring stability will be proved
in a future work.
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