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H-1034 Budapest, Bécsi út 96/B, Hungary, (e-mail:
tar.jozsef@nik.uni-obuda.hu)

∗∗∗ Physiological Controls Research Center, Research, Innovation and
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Abstract: The operation of the nervous system, consequently the various dynamic neuron
models, show strong nonlinearities. Their control, that may result in the treatment of various
diseases, have to cope with the essential difficulties as the great deviations/uncertainties in
the parameters of the available models, and the time-delay related to the observations of the
measurable quantities, the computation, and the exertion of the control signal. For tackling
model uncertainties a novel, fixed point transformation (FPT)-based adaptive control approach
was suggested that generally works by the use of fresh observations on the behavior of the
controlled system, therefore its operation may be degraded by time-delay effects. Furthermore,
in the practice time-delay effects can be reduced by using model-based extrapolation of the
motion of the controlled system for the “dead period” spanned between the observation and
the actual appearance of the control action. In the lack of reliable dynamic model such an
extrapolation may be questionable. In this research, up to or knowledge, at first time, time-
delay effects are studied in the FPT-based adaptive control of the FitzHugh-Nagumo Neuron
Model using novel fractional order kinematic feedback terms. This neuron is a relevant paradigm
because showing very sharp nonlinearities in its dynamics. It is concluded that the use of an
approximation-based extrapolation in a control of this special fractional order PID-type feedback
can considerably reduce the consequences of the time-delay problems.

Keywords: Adaptive control, Delay compensation, Fixed point transformation-based adaptive
control, Fractional order feedback, Uncertainty, Motion extrapolation.

1. INTRODUCTION

Neurons as “elementary building blocks” of the nervous
system produce sharp “spiking” activities, therefore their
dynamic models developed for the use in modern life
sciences have strongly nonlinear components (e.g. Brodal
(2010)). Various modeling efforts can be tracked from
the early, relatively simple “Integrate and Fire Neuron”
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by Lapicque (1907) to the very complex “Hodgkin-Huxley
Model” (see Hodgkin and Huxley (1952)) to describe non-
linearities. However, in control technology the “precision”
is not the only appreciable virtue of a model. Other proper-
ties as simplicity and easy applicability are also important
features. This fact lead to the appearance of mathemat-
ically simplified models. On this reason FitzHugh (1961)
developed the “Bonhoeffer – van der Pol oscillator” that
is a special version of the original one published by van der
Pol (1927). Nagumo et al. (1962) developed an equivalent
circuit of this oscillator for use in “experimental” investi-
gations. On similar reason Matsumoto (1984) invented a
realization of the Chua circuit. These simplified circuits
are appropriate to produce the chaotic phenomena the
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significance of which in the nervous system became clear
in the nineties of the past century (e.g. Glass (1995),
Rabinovich and Abarbanel (1998), Feudel et al. (2000),
Guckenheimer and Oliva (2002), Zhou and Kurths (2003)).
Controlling chaotic phenomena naturally obtained great
attention e.g. as the synchronization of coupled neurons
(Wang et al. (2004)).

The development of the currently prevailing methodology
to design adaptive controllers commenced in the early
nineties by Slotine and Li (1991). These methods are based
on the PhD dissertation by Lyapunov (1892) that was
written in Russian, and only later became available for
the western world due to its English translation (Lyapunov
(1966)).

On the basis of certain critical observations made on the
complexity of the Lyapunov function-based design, and
on the fact that it requires “too much” because working
with “satisfactory conditions” instead of “necessary and
satisfactory conditions” by Tar et al. (2010), elaboration of
its alternative was initiated (Tar et al. (2009)) that at first
transforms the control task into a fixed point problem then
solves it via iteration. The historical root of this problem
solving approach arose in the 17th century (Ypma (1995)),
and its application area was extended to quite abstract
sets (Banach (1922)). For the “problem re-formalization”
novel Fixed Point Transformations (FPT) were developed
by Dineva et al. (2015). Since this approach, in contrast to
the global stability of the Lyapunov function-based design,
converges only within a bounded basin, its behavior in
the divergent region as well as its stabilization possibilities
were extensively investigated (e.g. Kósi et al. (2012b), Kósi
et al. (2012a), Várkonyi et al. (2012), Kósi et al. (2013)).
For its possible application in neurology the adaptive
control of the Chua-Matsumoto circuit was studied by
Rudas et al. (2011), and that of the Hodgkin–Huxley
neuron was investigated by Bitó and Tar (2015), too.
Regarding other fields of life sciences the use of this design
method was considered in the adaptive control for treating
type I diabetes mellitus (e.g. Eigner et al. (2015)), and in
anaesthesia control (e.g. Csanádi and Tar (2016)).

In these early investigations the problem of time-delay
effects was not considered as a central point. Only the
initial steps were done in controlling Classical Mechanical
systems (e.g. Redjimi and Tar (2018)). The aim of the
present paper is to report the first preliminary result in
life sciences by considering the control of the FitzHugh
– Nagumo neuron model with a novel fractional order
feedback.

2. ON THE FRACTIONAL ORDER PID-TYPE
FEEDBACK SUGGESTED

Historically the “systematic PID control” was invented
in the forties of the past century, and it was applied for
the control of ships (e.g. Bennett (1993)). Based on the
simple property of the differential equation ẋ(t) = −Λx(t),
i.e. that for a constant parameter Λ > 0 its solution,
x(t) = x(t0) exp (−Λ(t− t0)) → 0 as t → ∞, for a nominal
trajectory to be tracked qN (t), and the actually realized one
q(t), for kinematically prescribing the wished tracking error
relaxation, multiple integrals of the tracking error can be
introduced as

e0(t) = qN (t)− q(t),

e1(t)
def
=

∫ t

t0

e0(ξ)dξ, . . .

en+1(t)
def
=

∫ t

t0

en(ξ)dξ, n ∈ IN, etc. (1a)

For the control of an order K ∈ IN system the requirement(
Λ + d

dt

)K+L
eL(t) ≡ 0 can be prescribed, that, if it is

realized, will drive the tracking error and its appropriate
integrals to zero, because it contains the order K time-
derivative of the given coordinate of the system q(K)(t)
that immediately can be set by the exerted control “force”.
According to Munkhammar (2004), perhaps it is the sim-
plest way to the introduction of the idea of the fractional
order feedback if we realize that the multiple error integrals
can be expressed as Riemann-Liouville n-fold integrals
defined as

Fn(t) =
1

(n− 1)!

∫ t

t0

f(ξ)(t− ξ)n−1dξ for n ∈ IN , (2)

that mathematically can be extended to complex numbers
as n ≡ α ∈ C as a fractional order integral defined as

Iαa f(x)
def
=

1

Γ(α)

∫ x

a

f(ξ)(x− ξ)α−1dξ . (3)

This extension is based on the properties of Euler’s Γ
function, and normally, according to Munkhammar, all
the important proofs in the subject area are based on the
particular features of the Γ and B functions. With the ex-
ception of the non-positive integers as α ∈ {0,−1,−2, . . .}
the extended function is finite, otherwise it is divergent.
The “Fractional Order Derivative” as oder α is defined
in (4) for x > a on the reason that the fractional order
integral for the same order parameter α ∈ (0, 1) yields the
original function, i.e. Dα

a I
α
a f(t) = f(t).

Dα
a f(x)

def
=

1

Γ(1− α)

d

dx

∫ x

a

f(ξ)(x− ξ)−αdξ . (4)

Though countless possibilities are available for the elab-
oration of various, different concepts for the definition
of fractional order derivatives, perhaps the version given
in (4), i.e. the Riemann-Liouville definition is the most
frequently used one in control technology. For instance
Deutschmann et al. (2017) elaborated a “Linear Time-
Invariant” LTI-type model for a “soft” robotic system that
contains tendons, and applied a PDα-type controller. Also,
various fractional-order feedback terms can be invented
by replacing the integer order derivatives or integrals in
the PID control by fractional order ones as PIλDµ (e.g.
Dumlu and Erenturk (2014)). It is also possible to intro-
duce additional feedback terms in the form PDD1/2 (e.g.
Bruzzone and Fanghella (2014)). For instance, by Muresan
et al. (2015) fractional order control of unstable processes,
the magnetic levitation was studied. Also, the fractional
order control of a visual servoing system is an interesting
example (Copot et al. (2013)).

Observing the fact that in (4) the integrand at the upper
limit of the integration is singular, following the idea
proposed by Redjimi and Tar (2018) to avoid numerical
problems, we apply only the integer order integral of (4).
So the differentiation of the “delicate integral” can be
evaded. Supposing that f(ξ) in (4) is uniformly continuous,
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by the use of a discrete time-grid it can be assumed that
f(ξ) varies slowly between the grid-points, and a simple
approximation that keeps f(ξ) constant between the grid-
points can be done, the so obtained integral can be exactly
calculated over the grid. Due to the “forgetting nature” of
the integral in (4) it is not needed to complete it over the
whole interval [t, t0]: it can be truncated and restricted
to [t, t − T ] with a finite memory length T . Accordingly,
with this approach, the replacement of the integer order
derivative as in (5a) was suggested

ė(t) = ė(t0) +

∫ t

t0

ë(ξ)dξ to be replaced by∫ t

t0

[
Dα

t0 ė(ξ)
]
dξ , α ∈ (0, 1) . (5a)

Accordingly, with this approach an approximate “Frac-
tional Order PID” controller can be defined by the use of
the desired tracking error relaxation for a 2nd order system
at time instant t as

q̈D = q̈N + Λ3
1e1 + 3Λ2

1e0 + 3Λ2

∫ t

t0

[
Dα

t0 ė(ξ)
]
dξ , (6)

in which the ratio of the constants Λ1 and Λ2 can be
appropriately set. By studying the response given for a
step function when the exact realization of q̈D is assumed,
according to Fig. 1, in the forthcoming simulations the
settings δt = 10−3 s, α = 0.7, grid length 150 steps,
and Λ2/Λ1 = −2.25 were used. It can well be seen
that the multiple integral-based solution provides great
fluctuations, and that the FPD controller yields better
tracking properties than the PD controller. In similar
manner the FPID seems to be better than the PID
controller.

Fig. 1. Comparison of the classic PD, PID, FPD, FPID,
and double integral-based solution in tracking a step
function (grid width δt = 10−3 s, α = 0.7, grid length
150 steps, and Λ2/Λ1 = −2.25), and a fine resolution
graph for various α values

3. THE FIXED POINT TRANSFORMATION-BASED
ADAPTIVE APPROACH AND POSSIBLE

EXTRAPOLATION

In this paper the neuron model also investigated by Dineva
et al. (2015) was applied as

dv

dt
= v − v3

3
− w + Iext + µICtrl (7a)

dw

dt
=

v + a− bw

τ
(7b)

in which ICtrl denotes the control signal, and parameter µ
denotes the sensitivity of the system to the control current.

Three different settings were used in the simulations: one
was used for the generation of the nominal trajectory to
be tracked, the other set was available for the controller
as a priori known approximate model data, and the third
one represented the properties of the actual system under
control (Table 1). While Dineva et al. investigated the
control of a 1st order system dynamically coupled to some
“parasite dynamics” (i.e. the control of v(t) was considered
by the use of the control signal ICrtl), here we consider
the control of an underactuated system in which w(t) is
controlled by this current. This task has the relative order
2, since only ẅ can be directly controlled by ICrtl, and
the motion of v(t) happens accordingly. By the use of the
approximate model parameters in the time-derivative of
(7b), that is in ẅ the derivative v̇ appears that through
(7a) is in direct relationship with ICrtl.

Table 1. The parameters of the trajectory
generator, that of the “approximate model”
and the actually controlled “Actual/Exact”

neurons

Parameter Ideal Approximate Actual/Exact

a ai = 0.75 aa = 0.8 ae = 0.7
τ τi = 11 τa = 10 τe = 12.5
b bi = 0.55 ba = 0.6 be = 0.5

Iext Iexti = 0.45 Iexta = 0.4 Iexte = 0.5
µ µi = 1.0 µa = 1.0 µe = 1.0

Since the FPT-based design tries to realize an arbitrary
desired ẅD 2nd time-derivative, in its kinematic block the
FPID design detailed in (6) can be applied (Fig. 2). If
our digital controller has δt discrete time-resolution, and
ẅ varies only slowly, this schema generates a sequence of
deformed control signals by a three-variable function G as

ẅDef
n+1 = G

(
ẅDef

n , ẅn, ẅ
D
n+1

)
that, in the case of conver-

gence, corresponds to adaptive learning: the control signal
in cycle n+1 depends on the desired 2nd time-derivative in
cycle n+1, on the deformed control signal and the observed
response in the previous cycle, n. For the “Adaptive Defor-
mation” various fixed point transformations can be used.
For multiple variable cases the single variable monotonic,
smooth scalar function with the attractive fixed point x⋆

F : IR 7→ IR F (x)
def
= x/2+D stands withD = 0.6, and the

response error in the cycle i hi
def
= f(rDef

i ) − rDes
i+1 ∈ IRm

can be used in the FPT as

rDef
i+1 = G

(
rDef
i , f

(
rDef
i

)
, rDi+1

)
def
= rDef

i if hi < ϵ = 10−10 ,

[F (A∥hi∥+ x⋆)− x⋆]
hi

∥hi∥
+ rDef

i otherwise .
(8a)

Its convergence properties were discussed by Dineva et al.
(2015). In our special case the system’s response is r ≡
ẅ ∈ IR.

This structure is evidently flexible enough for the intro-
duction of various delay times if the observation on the
“realized response” becomes available only later for the
controller in the “Adaptive Deformation” function. How-
ever, the “obsolence” of the available observations can
degrade the operation of the controller.

Regarding the extrapolation possibilities in our case the
following scenario is assumed: the sensor signals and the
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control commands have the delay time TDδt (TD ∈ IN
measures the delay time in δt units). If the controlled
process is commenced at time t0, any actuation at time
t can be realized only if t − 2TDδt > t0 because the
sensor data originating from the measurement at discrete
time i − 2TD becomes available for the controller at
the time i − TD for the calculation of the “deformed
control signal” as q̈Des

i−TD
. Then q̈Def

i−TD
is taken as rDef

i−TD
=

G
(
rDef
i−TD−1, f

Obs
i−1 , r

Des
i−TD

)
, and finally the control forces

calculated from it will be exerted on the controlled system
at time i. (The controller’s signal calculated at the discrete

time instant i − TD − 1 causes observable response effect
fObs
i−1 at time i − 1.) In the simulations the observed data
fi−TD

can be stored in the memory. As time elapses,
i.e. the discrete index i increases, the stored value later
becomes available for the controller as fObs

i−1 .

Kinematic Block

q̈D(t)

Adaptive Deformation

Delay

Controlled System

Delay

q̇(t0) +
∫ t

t0
q̈(ξ)dξ

q(t) realized

qN (t) nominal

q̈(t) realized response

q̈Def (t)

Approximate Model

Q(t) control force

q(t0) +
∫ t

t0
q̇(ξ)dξ

Fig. 2. Schematic structure of the “Fixed Point Transformation-based Adaptive Controller” taken from Redjimi and Tar (2017)

For dealing with the “dead zone” i ∈ [i − 2TD, i] var-
ious options are available. If precise models are avail-
able for LTI systems the “Smith Predictor” invented in
1957 (see e.g. Warwick and Rees (1988)) can be used
for the estimation of the state after the observation to
decrease the obsolence of the observed data. However, in
our case no precise model is availabe for extrapolation.
Since any kind of “fancying” for the system’s behavior
in the dead zone within the controller design does not
mean contradiction with the principle of causality, we
have various options. In the present paper we applied
some “extrapolation” for the period [i − 2TD, i − TD] to
feed the kinematic block with “less obsolete extrapolated
data”. We applied some “refreshments” in the arguments
of G by assuming the observation of the responses as

rDef
i−2TD+k = G

(
rDef
i−2TD+k−1, fi−2TD+k−1, r

Des
i−2TD+k

)
with

k ∈ {1, 2, . . . , TD} in which in the place of the observ-
able response the response of the approximate model was
placed.

4. SIMULATION RESULTS

In the simulations the adaptive parameter in (8) was A =
−1, the discrete time-resolution was δt = 10−3s, the feed-
back constant was Λ1 = 0.5 s−1, and the fractional order
derivative was calculated for n = 150 steps. For TD = 120
without adaptation and extrapolation the resulst are given
in Fig. 3. It can be seen that by switching on the adap-
tation the tracking error for the controlled variable w(t)
slightly decreased (Fig. 4). Finally, by switching on the
adaptation and extrapolation in Fig. 5 the situation was
drastically improved.

To reveal the significance of adaptivity, in Fig. 6 the
variation of the control current ICtrl and the “Nominal”,
“Desired”, “Deformed”, and the “Realized” ẅ values are
described. It can well be seen that the “Desired” and the

Fig. 3. Tracking properties for TD = 120 without adapta-
tion and extrapolation

Fig. 4. Tracking properties for TD = 120 with adaptation
and without extrapolation
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Fig. 5. Tracking properties for TD = 120 with adaptation
and extrapolation

“Realized” values are in each other’s close vicinity, and
that they considerably differ from the “Deformed” value.
The considerable difference between the “Nominal” and
the “Desired” values makes evident the significance of the
FPID corrections in the kinematic design.

To reveal the significance of the “long delay”, in Fig. 7 the
tracking error for variable w(t) and the control currents
ICtrl(t) are described for a “short delay” TD = 20.

Fig. 6. The control current ICtrl and the various ẅ values
for TD = 120 with adaptation and extrapolation

Fig. 7. The trajectory tracking, the tracking error for
variable w, and the control current ICtrl for TD = 20
with adaptation and extrapolation

5. CONCLUSION

In this research the combination of the FPT-based adap-
tive control with a particular, also FPT-based extrapola-

tion technique was found successful in numerical simula-
tions for a novel fractional order feedback-based adaptive
control of the “underactuated” FitzHugh – Nagumo neu-
ron with time-delay.

In the suggested method integer order integral of the frac-
tional derivatives is applied to evade numerical difficulties.
This approach allows simple approximate numerical calcu-
lation that can be accepted for uniformly continuous in-
tegrands. The approximation also truncates the fractional
order-based long memory of the control.

The main finding is that in spite of being in the lack of a
reliable system model, that normally would be required for
making the necessary extrapolation for the stabilization
of the controller burdened by time-delay problems, some
extrapolation can be done that considerably can improve
the tracking properties of the controller.

In further research we plan to check this approach in
the control of various, strongly nonlinear systems also
burdened by time delay effects.
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181–186.

Deutschmann, B., Ott, C., Monje, C., and Balaguer, C.
(2017). Robust motion control of a soft robotic system
using fractional order control. Advances in Service and
Industrial Robotics - Proc. of the 26th International
Conference on Robotics in Alpe-Adria-Danube Region
(RAAD 2017), June 21-23 2017, Torino, Italy (Carlo
Ferraresi & Giuseppe Quaglia Eds.), 142–149.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

910



Dineva, A., Tar, J., and Várkonyi-Kóczy, A. (2015). Novel
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