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Abstract: This paper deals with data-driven control design in a Model Reference (MR)
framework for multivariable systems. Based on a batch of input-output data collected on the
process, a fixed structure controller is estimated without using a process model, by embedding
the control design problem in the Prediction Error (PE) identification of an optimal controller.
A multivariable extension of the OCI (Optimal Controller Identification) method is applied in
the design of PID controllers for a refrigeration system based on vapor compression, which is
the subject of the benchmark process challenge of the IFAC PID 2018 conference. Simulation
results show the obtained controllers perform significantly better than the ones provided by the
benchmark challenge.
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1. INTRODUCTION

Vapor compression is the leading technology worldwide
in cooling generation, including air conditioning, refriger-
ation and freezing. A great deal of energy is required in
such tasks and a fundamental issue is to design control
strategies in order to increase the process efficiency (Ras-
mussen et al., 2005). Such efficiency is reached using a
controller which satisfies tight performance requirements,
such as zero steady-state error and fast transients.

High performance controllers are usually model-based,
where a mathematical model representing the systems’
dynamics should be derived. In the case of refrigeration
systems, this model can be obtained through the principles
of thermodynamics (see McKinley and Alleyne (2008),
for instance) or through system identification. However,
refrigeration systems present strong nonlinearities and
high coupling, which make modeling or identification of
such systems a hard task. In order to avoid this step,
data-driven control methods (Bazanella et al., 2012) can
be used: the controllers are designed based on one or more
batches of data collected from the plant, without deriving
a mathematical model for the process. The efficiency of
such controllers depends on the collected data through an
experiment, the controller structure and the definition of
performance requirements.

Data-driven control methods are typically based on the
Model Reference (MR) paradigm, in which the desired
closed-loop performance is specified by means of a closed-
loop transfer function – the Reference Model. There are
several data-driven methods developed for single-input
single-output (SISO) control problems in the literature.

⋆ This work was supported by CAPES and CNPq/BR.

Some of them are iterative (Hjalmarsson et al., 1998;
Karimi et al., 2004), others are “one-shot” – that is, non-
iterative, as (Campi et al., 2002; Karimi et al., 2007)
and Optimal Controller Identification (OCI) (Campestrini
et al., 2017), which is the one employed in this work.
However, SISO methods are not proper to be used when
interactions between variables are significant, and some
effort has been put in developing the extensions of these
methods for the multiple-input multiple output (MIMO)
case: extensions to iterative methodologies are presented
in (Jansson and Hjalmarsson, 2004; Mǐsković et al., 2005)
and have the disadvantage of requiring a higher number of
experiments; the one-shots are presented in (Yubai et al.,
2009; Formentin et al., 2012; Campestrini et al., 2016),
which are based on only one experiment, or two in the
case where instrumental variables are used.

The controller structure is an important choice in data-
driven control design. This choice is to data-driven design
as the model structure choice is to system identification
(Ljung, 1999). However, it is common practice in data-
driven control design, specially for the one-shot methods,
to choose a controller that is linear in its parameters, which
means that all the controller poles are fixed. An advantage
of the OCI methodology (Campestrini et al., 2017) is that
the controller structure can be chosen with a fixed part, in
order to fix an integrator for example, and an identifiable
transfer function, such that, besides zeros, poles can also
be identified. This characteristic is explored in this work,
where the derivative pole of a PID controller is not fixed,
allowing better matching to the desired reference model.

In this paper a MIMO version of the OCI method is
applied to the benchmark process challenge (Bejarano
et al., 2017) of the IFAC PID 2018 conference. Both
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decentralized and centralized PID are designed and the
closed-loop performances obtained with such controllers
are compared, through a combined criterion, to the ones
obtained with the benchmark proposed controllers. En-
hanced performances are obtained with both designed
controllers.

The paper is organized as follows: Section 2 presents def-
initions and problem formulation. The OCI MIMO for-
mulation is presented in Section 3. Section 4 presents the
refrigeration system and Section 5 presents the simulations
and obtained results. At last, conclusions are presented at
the end of paper.

2. PRELIMINARIES

Consider a linear time-invariant discrete-time MIMO pro-
cess

y(t) = G0(q)u(t) +H0(q)w(t), (1)

where q is the forward-shift operator, u(t) and y(t) are n-
vectors representing the process’ input and output, respec-
tively, and w(t) is a sequence of independent random n-
dimensional vectors with zero mean values and covariance
matrix E[w(t)wT (t)] = Λ. The transfer matrix G0(q) and
the noise model H0(q) are square n × n matrices whose
elements are proper rational transfer functions.

The design task is to tune the parameter vector P ∈ R
p

of a linear time-invariant controller C(q, P ) in order to
achieve a desired closed-loop response. We assume that
this controller belongs to a given user-specified controller
class C such that all elements of the loop transfer matrix
L(q) = G0(q)C(q, P ) have positive relative degree for all
C(q, P ) ∈ C. The control action u(t) can be written as

u(t) = C(q, P )e(t) = C(q, P )(r(t)− y(t)), (2)

where r(t) is the reference signal, which is assumed to be
quasi-stationary and uncorrelated with the noise w(t), that
is, Ē

[
r(t)wT (s)

]
= 0 ∀t, s, where

Ē[f(t)] , lim
M→∞

1

M

M∑

t=1

E[f(t)]

with E[·] denoting expectation (Ljung, 1999). The system
(1)-(2) in closed-loop becomes

y(t, P ) = T (q, P )r(t) + (I − T (q, P ))v(t), (3)

T (q, P ) = [I +G0(q)C(q, P )]−1G0(q)C(q, P ), (4)

where v(t) = H0(q)w(t) and the dependence on the
controller parameter vector P is now made explicit in the
output signal y(t, P ).

The controller class C is defined as

C = {C(q, P ) : P ∈ DP ⊆ R
p} ,

where the structure of the controller to be designed is
defined as

C(q, P ) =






C11(q, ρ11) C12(q, ρ12) · · · C1n(q, ρ1n)
...

...
. . .

...
Cn1(q, ρn1) Cn2(q, ρn2) · · · Cnn(q, ρnn)




 (5)

and P = [ρT11 ρT12 . . . ρTn1 . . . ρTnn]
T . A particularly

relevant class, which will be used in this paper, is that
of Proportional-Integral-Derivative (PID) controllers with
free derivative pole. In such PID controllers each nonzero

element of the controller matrix C(q, P ) in (5) has the
following parametrized structure

Cij(q, ρij) =
aijq

2 + bijq + cij

(q − 1)(q − dij)
(6)

where ρij = [aij bij cij dij ]
T .

In the Model Reference approach to the design, the closed-
loop performance is specified through the desired closed-
loop transfer matrix Td(q), also known as the reference
model. The controller parameters are then tuned as the
solution of the problem

P̂MR = argmin
P

JMR(P ), (7)

JMR(P ) ,
1

M

M∑

t=1

||(Td(q)− T (q, P ))r(t)||22, (8)

where r(t) is the reference signal of interest and M is the
time horizon.

The ideal controller Cd(q) is the one that allows the closed-
loop system behavior to match exactly the one prescribed
by Td(q) and is given by

Cd(q) = G0(q)
−1Td(q)[I − Td(q)]

−1. (9)

If (9) were used in the closed-loop, then the objective
function (8) would evaluate to zero. However, this ideal
controller may not correspond to any controller in the
controller set C; actually in most practical applications it
will not belong to C. When considering the situation where
Cd(q) ∈ C, we shall say that the following assumption
holds:

Assumption 1. Matching condition

∃ Pd ∈ DP such that C(q, Pd) = Cd(q).

Achieving this condition for a predefined controller struc-
ture requires a proper choice of the reference model, which
in turn requires some prior knowledge of the process
(Bazanella et al., 2012; Gonçalves da Silva et al., 2014).

3. OPTIMAL CONTROLLER IDENTIFICATION

Using the concept of the ideal controller, it is possible to
turn the model reference control design problem into an
identification problem of the controller, without using a
model for the process. This data-driven design method was
presented in (Campestrini et al., 2017) for SISO systems
and a MIMO version is used in this work. We now briefly
describe the method.

The core idea is to rewrite the input-output system (1)
in terms of the ideal controller Cd(q), which is done by
inverting the relation (9), i.e.,

G0(q) = Td(q) (I − Td(q))
−1

C−1
d (q). (10)

Then a model for the plant can be written in terms of the
controller parameters as

G(q, P )
∆
= Td(q) (I − Td(q))

−1
C−1(q, P ) (11)

and the task will be to identify a model C(q, P̂ ) of the
ideal controller Cd(q) within the parametrized controller
class defined by C. In other words, this corresponds to an
identification of a plant model G(q, P ) with a fixed part,
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which is a function of the reference model Td(q), and a
parametrized part, which is a function of the controller
inverse. Thus, (1) can be rewritten as

y(t,Θ) = G(q, P )u(t) +H(q,Θ)w(t) (12)

where Θ =
[
PT QT

]T
and Q ∈ R

c is an additional
parameter vector that appears in the noise model.

From M measured input-output data, the parameter vec-

tor estimate Θ̂M =
[

P̂T
M Q̂T

M

]T

is defined as (Campestrini

et al., 2017):

Θ̂M = argmin
Θ

V (Θ) (13)

V (Θ) =
1

M

M∑

t=1

‖ǫ(t,Θ)‖
2
2 , (14)

where ǫ(t,Θ) is the prediction error

ǫ(t,Θ)
∆
= y(t)− ŷ(t|t− 1,Θ) (15)

and

ŷ(t|t− 1,Θ) = H−1(q,Θ)Td(q) (I − Td(q))
−1

C(q, P )−1u(t)

+
[
I −H−1(q,Θ)

]
y(t) (16)

is the one-step ahead predictor for model (12), where
G(q, P ) has been replaced by (11). The predictor is now
a function of the inverses of the noise model and the
controller.

Instead of minimizing JMR(P ), which depends on the un-
known plant G0(q), the design is made by minimizing the
cost function V (Θ), which is purely data-dependent and
no model of the plant G0(q) is used. Since the estimation of
the optimal MR controller has been transformed into a PE
identification problem, all properties of PE identification
theory apply. Specifically, the estimate in (13) converges

to the vector Θ∗ =
[
P ∗T Q∗T

]T
defined as:

Θ̂M → Θ∗ = argmin
Θ

V̄ (Θ) (17)

where

V̄ (Θ) = Ē ‖ǫ(t,Θ)‖
2
2 . (18)

It is worth mentioning that, since the object of interest is
the optimal controller only, and not the plant model, the
identification of H0(q) is of no interest for the controller
design. It is well known from PE identification theory
that if the real system belongs to the chosen model class
(Assumption 1 is satisfied, in the controller identification
problem), an informative enough data set is collected in
open loop, and G(q, P ) and H(q,Θ) are parametrized

independently (that is, ∂H(q,Θ)
∂P

= 0), then, for M → ∞
(Ljung, 1999):

C(q, P̂M ) → Cd(q). (19)

If Assumption 1 is satisfied but data are collected in
closed-loop, then (19) holds provided that ∃Θ0 such that
H(q,Θ0) = H0(q).

It is often the case that one imposes some fixed part
in the controller, the most common instance of this fact
probably being the imposition of a pole at q = 1 to
guarantee zero steady-state error for constant references
and perturbations. This fixed part does not need to be

identified. So, we call CF (q) this fixed scalar part and
rewrite the controller transfer function as

C(q, P ) = CF (q)CI(q, P ). (20)

Using (20) and (11), (12) can be written as

y(t,Θ) = Td(q) (I − Td(q))
−1

C−1
F (q)

︸ ︷︷ ︸

F (q)

C−1
I (q, P )

︸ ︷︷ ︸

C̃(q,P )

u(t)

+H(q,Θ)w(t) (21)

where F (q) is a fixed transfer matrix formed by the fixed
part of G(q, P ). In the noise-free scenario, which is the case
of the benchmark simulations, we consider H(q,Θ) = I
and the predictor (16) is reduced to

ŷ(t|t− 1, P ) = F (q)C̃(q, P )u(t). (22)

Also, notice that in the SISO case, F (q) commutes with

C̃(q, P ) and (21) can be written as

y(t,Θ) = C−1
I (q, P )

︸ ︷︷ ︸

C̃(q,P )

×Td(q) (I − Td(q))
−1

C−1
F (q)u(t)

︸ ︷︷ ︸

ũ(t)

+H(q,Θ)w(t)

= C̃(q, P )ũ(t) +H(q,Θ)w(t). (23)

Solution for (23) can be easily obtained through available
toolboxes like Matlab R©

ident. However, in the MIMO
case the matrices in (21) do not commute. Thus a ded-
icated optimization solution was implemented in order to
minimize (14), using the Matlab R© function fminunc. This
algorithm requires an initial controller parameter vector,
which was obtained through the application of the MIMO
version of Virtual Reference Feedback Tuning (VRFT)
(Campestrini et al., 2016), a one-shot data-driven method.

4. REFRIGERATION SYSTEM

As mentioned above, the OCI method will be used to
design PID controllers for a refrigeration system proposed
by the benchmark PID 2018 (Bejarano et al., 2017). A
canonical one-compression-stage, one-load-demand vapor-
compression refrigeration cycle is shown in Figure 1, where
the main components are represented.

Fig. 1. Schematic picture of one-compression-stage, one-
load-demand vapor-compression refrigeration cycle.

The inverse Rankine cycle is applied, where the refrigerant,
R404a, removes heat from the secondary flux at the
evaporator, which is a 60% propylene glycol aqueous
solution, and reject heat at the condenser by transferring
it to its secondary flux (air). The compressor is responsible
for increasing the refrigerant pressure and temperature
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while the expansion valve upholds the pressure difference
between the condenser and the evaporator (Bejarano et al.,
2017).

The variables to be controlled are the outlet temperature
of the evaporator secondary flux Te,sec,out and the degree
of superheating of the refrigerant at the evaporator outlet
TSH , but their desired values cannot be set independently.
The manipulated variables are the compressor speed N
and the expansion valve opening Av. Besides that, Table 1
shows some variables that act as measurable disturbances.

Table 1. System disturbances.

Disturbance Symbol Unit

Inlet temperature of the condenser secondary flux Tc,sec,in
◦C

Mass flow of the condenser secondary flux ṁc,sec g/s

Inlet pressure of the condenser secondary flux Pc,sec,in bar

Inlet temperature of the evaporator secondary flux Te,sec,in
◦C

Mass flow of the evaporator secondary flux ṁe,sec g/s

Inlet pressure of the evaporator secondary flux Pe,sec,in bar

Compressor surroundings temperature Tsurr
◦C

The designed PID controllers will be compared to the ones
proposed by the benchmark. One of them is a multivariable
PID controller (whose gains are omitted), while the other
is a decentralized one, which is shown below:

C(q) =





−1.0136(q − 1.0240)(q + 0.9623)

(q − 1)(q − 0.9853)
0

· · ·

0

0.42(q − 0.04762)

q − 1



 · (24)

In this last case, the outlet temperature of the evaporator
secondary flux is controlled by means of the expansion
valve, while the compressor speed controls the degree of
superheating. All the controllers mentioned are in the
discrete-time domain, while the sampling time is consid-
ered to be Ts = 1s.

Closed-loop performance is evaluated through eight indi-
vidual indices and one combined index, as explained in the
benchmark documentation (Bejarano et al., 2017). The
first two indices are the Ratios of Integrated Absolute
Error (RIAE), taking into account that both plant outputs
(Te,sec,out and TSH , in this order) should follow their
respective references. The third is the Ratio of Integrated
Time multiplied Absolute Error (RITAE) for Te,sec,out,
which penalizes the tracking error according to the time
elapsed since the instant of reference change. The fourth,
fifth, and sixth indices are the Ratios of Integrated Time
multiplied Absolute Error (RITAE) for TSH (considering
three different step changes in its reference). The seventh
and eighth indices are the Ratios of Integrated Absolute
Variation of Control signal (RIAVU) for the two manipu-
lated variables, which penalize the time derivative of Av

and N (in this order). The combined index corresponds
to a weighted average of the eight individual indices. An
index smaller than 1 means the controller C2 is better than
C1 (see tables presented on next section).

5. SIMULATION RESULTS

The system is always simulated considering the initial op-
erating point given in Table 2. In order to collect data from

Table 2. Initial operating point.

Variable Value Unit

Manipulated variables
Av 48.79 %
N 36.45 Hz

Disturbances

Tc,sec,in 30 ◦C
ṁc,sec 150 g/s
Pc,sec,in 1 bar
Te,sec,in −20 ◦C
ṁe,sec 64.503 g/s
Pe,sec,in 1 bar
Tsurr 25 ◦C

Output variables
Te,sec,out −22.15 ◦C

TSH 14.65 ◦C

the system to apply the OCI method, the experiment is set
as follows: the system starts at the given initial conditions
and the input is set as a Pseudorandom Binary Sequence
(PRBS) with fundamental period of 20 samples (the sam-
pling time is Ts = 1s) and amplitudes ±10% for the
valve opening and ±5 Hz for the compressor speed, plus
their initial conditions. It is assumed that the disturbances
remain constant through the whole experiment, which can
be considered true if the surroundings’ temperature and
pressure do not vary and if there are no load changes at
the refrigerator during the 20min of experiment. The result
is portrayed in Fig. 2.
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Fig. 2. PRBS open-loop experiment with all disturbances
kept constant.

With this batch of data both a decentralized and a
centralized PID controller were designed for the following
reference model:

Td(q) =
0.9

q − 0.1
I2, (25)

where I2 is the identity matrix of size 2. The chosen Td(q)
corresponds to a settling time of 2s and zero steady-state
error for step references (Gonçalves da Silva et al., 2014).

Using the collected data presented in Fig. 2 and (25), the
MIMO VRFT method was applied to obtain the initial
controllers for OCI. Both a decentralized and a centralized
controller were obtained, given, respectively, by
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C(q) =





−23.4(q2 + 0.01057q + 0.0142)

q(q − 1)
0

· · ·

0

0.224(q − 0.09652)(q − 0.03344)

q(q − 1)



 (26)

C(q) =







−21.70(q − 0.0644)(q + 0.0600)

q(q − 1)
−45.79(q − 0.0294)(q + 0.0282)

q(q − 1)

· · ·

−0.1522(q2 + 0.2052q + 0.2384)

q(q − 1)
4.0591(q − 0.0890)(q + 0.0819)

q(q − 1)






· (27)

The combined performance index J(C2, C1) obtained with
the initial controllers is given in Table 3. The enhancement
already obtained with the VRFT controller is visible:
compared to the given decentralized controller (24) both
designs presented a smaller cost, while when comparing to
the MIMO benchmark controller, the centralized VRFT
controller was able to provide a smaller cost.

Table 3. Combined indices of VRFT controllers
compared to provided controllers.

Comparing to (24) Comparing to MIMO
C2 =(26) C2 =(27) C2 =(26) C2 =(27)

J(C2, C1) 0.656 0.317 2.004 0.506

The VRFT decentralized controller (26) was used as initial
condition to design the decentralized OCI controller, while
(27) was used as initial condition to the centralized design.
The obtained OCI controllers are:

C(q) =





−23.3(q2 + 0.007902q + 0.02767)

(q − 1)(q − 0.1227)
0

· · ·

0

5.548(q2 + 0.0839q + 0.05338)

(q − 1)(q + 0.1078)



 (28)

C(q) =







−22.48(q + 0.0562)(q − 0.9558)

(q − 0.9652)(q − 1)
−46.35(q + 0.02822)(q − 0.04973)

(q − 0.08749)(q − 1)

· · ·

−0.1023(q2 − 1.788q + 0.9597)

(q − 1)(q − 0.9834)
4.098(q + 0.05817)(q − 0.9831)

(q − 0.9762)(q − 1)






· (29)

Taking into account the ranges of the manipulated vari-
ables, which are 10 − 100% for Av and 30 − 50 Hz for
N , the backtracking anti-windup technique (Peng et al.,
2015) was implemented in order to improve the controllers
performance. Fig. 3 shows the block diagram related to the
compressor speed, where N̂ is its desired value and N is
the real one, which is applied to the system. A similar
reasoning applies to the valve opening. The gain k of the
anti-windup loop was chosen equal to 0.8.

Figs. 4 and 5 show the plant inputs and outputs, respec-
tively, obtained with both OCI controllers compared to
the provided results of the given MIMO controller, with
unknown transfer function. This controller is named as
Base MIMO controller in comparisons. In this simulation,
the value of the disturbance Te,sec,in switches from −20 ◦C
to −21 ◦C at the time instant t = 9 min and from −21 ◦C
to −20 ◦C at t = 16 min. Moreover, Tc,sec,in switches from
30 ◦C to 27 ◦C at t = 16 min. The other disturbances
remain at their initial values.

C(q)

+

k
q−1

e(t)

N̂(t)

Âv(t)

−

+

N(t)

Fig. 3. Backtracking anti-windup technique.
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Fig. 4. Inputs of the closed-loop experiment in the pro-
posed scenario.
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Fig. 5. Outputs of the closed-loop experiment in the
proposed scenario.

As it can be seen in Figs. 4 and 5, closed-loop response
with the designed controllers is visually slightly better
than the original one. Table 4 shows that the improvement
is actually relevant. It compares the OCI controllers to the
Base MIMO controller and also to the one in (24).

Notice that the combined performance indices related to
the OCI controllers (last row of Table 4) are smaller
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Table 4. Rindices and J compared to provided
controllers.

Comparing to (24) Comparing to MIMO
C2 =(28) C2 =(29) C2 =(28) C2 =(29)

RIAE1 0.1406 0.1589 0.4005 0.4526

RIAE2 0.2515 0.221 0.5642 0.4958

RITAE1 0.5444 0.0655 0.338 0.04071

RITAE2 0.0708 0.05062 0.387 0.2767

RITAE3 0.1901 0.1911 0.5948 0.5979

RITAE4 0.03556 0.09228 0.2777 0.7207

RIAVU1 1.13 1.096 1.002 0.9711

RIAVU2 1.243 0.6714 0.905 0.4887

J(C2, C1) 0.3225 0.1844 0.4576 0.4074

(some by a factor of ≈ 2 or more) than the ones related
to the VRFT controllers, which are shown in Table 3.
This is mainly due to the fact that the derivative pole
is considered free in OCI and fixed in VRFT.

At last, Table 5 compares the designed OCI controllers
between them. Notice that the centralized controller has
a better overall performance (J(C2, C1) < 1), but the
decentralized one is also suitable for practical purposes.

Table 5. Rindices and J between proposed con-
trollers.

C1 =(28) and C2 =(29)

RIAE1 1.13

RIAE2 0.8788

RITAE1 0.1204

RITAE2 0.7149

RITAE3 1.005

RITAE4 2.595

RIAVU1 0.9693

RIAVU2 0.54

J(C2, C1) 0.938

6. CONCLUSIONS

A MIMO version of the OCI method was applied to the
benchmark process. No process model is obtained and the
designed PID controllers provided better results than the
original ones. The anti-windup technique employed also
contributes to improving closed-loop performance.

Compared to the provided benchmark controllers, the
designed ones with the OCI method resulted in smaller
costs. The only exception concerns the performance indices
related to the manipulated variables, for which costs
smaller than 1 were achieved in half of the comparisons
made, even though the combined cost is always smaller.
Compared to the initial VRFT controllers, the OCI ones
also resulted in smaller combined costs. This fact can
be explained considering the derivative pole of the PIDs,
which is fixed in VRFT and free in OCI. In other words,
the controller structure has more degrees of freedom,
allowing an identification closer to the matching condition.
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