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Abstract: This work shows that a Proportional Derivative controller with weighted
Derivative action plus a Disturbance Observer, is equivalent to a Proportional Integral
Derivative (PID) controller with weighted Proportional and Derivative actions, when they
are applied to servo drives. A byproduct of this equivalence is a tuning rule for the PID
controller, called the DOB tuning, which is expressed in terms of the cutoff frequency of
the filter employed in the DOB. Experiments in a laboratory testbed allow assessing the
performance of a PID controller under the resulting tuning formulae.
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1. INTRODUCTION

The Proportional Integral Derivative (PID) control law
is without doubt the most employed algorithm for
regulating industrial processes Åström and Hägglund
(1995), Visioli (2006). It is also employed for controlling
servo drives Ellis (2012), Gao et al. (2013), robot
manipulators Spong and Vidyasagar (1989), Rocco
(1996), and quadrotors Pounds et al. (2012).

On the other hand, the Disturbance Observer (DOB)
Ohishi et al. (1988); Ohnishi et al. (1996) relies on input
and output measurements and a nominal model of a
perturbed plant to estimate the disturbances (see Fig.1).
Subsequently, the disturbance estimate is employed to
construct an inner feedback controller to counteract the
effect of the disturbances. An outer loop controller is then
designed based on the nominal model of the plant.

Tuning of PID and DOB-based controllers is a key
issue for its practical implementation. The tuning of
the PID controllers has been the matter in several
works and textbooks Kelly (1995), Skogestad (2001),
O’Dwyer (2009), and the Ziegler-Nichols and the
Cohen-Coon methods are among the most popular. In
the case of DOB-based controllers, their tuning has
been accomplished by means of H∞ techniques Zheng
et al. (2017), through the use of binomial filters Lee
and Tomizuka (1996), or by solving a mixed sensitivity
optimization problem Kim and Chung (2003).

In its worth noting that there exist few works dealing
with the relationship between the PID and DOB-based
controllers. This issue deserves study because they
are linear in nature and incorporate a mechanism for
counteracting disturbances. The integral action in a PID
controller compensates for constant disturbances, and it
has been considered as an implicit disturbance observer
Johnson (2008). Besides, the disturbance estimate
provided by a DOB-based controller counteracts constant

and time-varying disturbances. Interestingly enough, an
early work on the DOB Yamada et al. (1997) mentions the
equivalence between PID-like and DOB-based controllers
for a general class of linear plants. Nevertheless, the
authors did not pursue further research on this issue.

The aim of this work is to show that a Proportional
Derivative controller with weighted Derivative action plus
a Disturbance Observer (PD+DOB), is equivalent to a
weighted PID controller. This equivalence assumes that
the PD+DOB is designed for a servo drive, and the DOB
is fed by velocity measurements. The equivalence provides
a tuning rule for the weighted PID controller called the
DOB tuning, expressed in terms of the cutoff frequency
of the filter used for building the DOB.

The outline of this exposition is as follows. After
introducing the basic idea of disturbance observes, the
work describes how a PD+DOB controller is applied to
a servo drive. Subsequently, the equivalence between the
PD+DOB and a PID controller is established. Real-time
experiments on a laboratory prototype allow assessing
the performance of the servo drive when controlled by
the PID controller under the DOB tuning.

2. PRELIMINAIRES ON DISTURBANCE
OBSERVERS

Disturbance Observers are employed for rejecting internal
and external disturbances acting on a plant. Fig. 1 depicts
a block diagram where a Disturbance Observer (DOB) is
applied for compensating disturbances in a linear plant.
From to this figure, the output of the plant is given by

y = P (s)(u+ d) (1)

The basic idea behind a DOB is to use measurements
of the plant input and output to reconstruct the
disturbance. The above is accomplished by computing d
from (1) and assuming that the plant is minimum phase

d = P−1(s)y − u (2)
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Fig. 1. Disturbance Observer block diagram.

According to this equation the disturbance d may be
interpreted as an input-output error modeling term.
A problem with this estimation scheme is that the
plant inverse P−1(s) is not proper and would require
measurements of the time derivatives of the output y
that may be not available in practice. On the other
hand, in many practical applications only a nominal plant
Pm(s) is known a priori . In order to circumvent the
above problems the disturbance estimation is performed
as follows

d̂ =
[
P−1m (s)y − u

]
F (s) (3)

The transfer function F (s) is a strictly proper stable
filter with characteristic polynomial of degree nf ≥ n
where n corresponds to the degree of the characteristic
polynomial of Pm(s). The above condition guarantees a
proper or strictly proper transfer function P−1m (s)F (s). It
is also worth noting that this estimation scheme assumes
that the bandwidth of the filter is equal or greater that
the bandwidth of the disturbance d. Note also that the
disturbance estimate d̂ is injected to the plant input to
counteract the effects of the real disturbance d.

Assuming an ideal disturbance compensation, i.e. when
the effects of d are completely compensated, a controller is
designed in order to obtain a closed-loop system fulfilling
some design criteria.

3. DISTURBANCE OBSERVER APPLIED TO A
SERVO DRIVE

Consider a servo drive composed of a servomotor, an
angular position sensor, and a power amplifier working
in current mode. A model of this system is

Jq̈(t) + F (q̇) = ku+ d̄m (4)

Variables q, q̇ and q̈ are respectively the angular position,
velocity and acceleration of the servo drive, u is the
control input voltage, J the servomotor and load lumped
inertia, f(q̇) is a nonlinear friction term that may include
viscous and Coulomb friction torques, k is a parameter
related to the amplifier gain and to the motor torque
constant, and the term d̄m is an external disturbance.

Model (4) has the next alternative writing

q̈(t) = −f(q̇) + bu+ d̄ (5)

where b = k/J , f(q̇) = F (q̇)/J and d̄ = d̄m/J . If the
friction torques are unknown, then they are lumped with
the disturbance d̄. This remark allows writing (5) as
follows

q̈(t) = bu+ d (6)
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Fig. 2. PD+DOB controller applied to a servo drive.

and d = d̄− f(q̇). Assume that the Laplace transform for
d exists, then it permits obtaining the Laplace transform
of (6)

s2Q(s) = bU(s) +D(s) (7)

with Q(s) = L {q}, D(s) = L {d} and U(s) = L {u}.
The notation L {•} stands for the Laplace operator

Based on the original DOB, Fig. 2 depicts the
block diagram of a Proportional with weighted
Derivative action controller plus a Disturbance Observer
(PD+DOB) applied to a servo drive. The DOB filter is
defined as

F (s) =
β

s+ β
(8)

with cutoff frequency β > 0. The proposed PD+DOB
controller relies on angular velocity measurements, and
assumes knowledge of the servo drive input gain b.

4. EQUIVALENCE BETWEEN PD+DOB AND PID
CONTROLLERS

Fig. 2 defines the PD+DOB control law

u =
1

b

[
Kpe−Kdq̇ − d̂

]
(9)

The proportional and derivative gains Kp and Kd are
positive constants, e = r − q, r is a constant desired

reference, and d̂ is an estimate of the disturbance d.
According to Åström and Hägglund (1995) and Visioli
(2006), a weighted derivative action uses an error ed
where a weight is imposed to the reference r, i.e. ed = c̄r−
y being c̄ ≥ 0 a constant weight, and y the measured
variable. In the case of the controller (9) c̄ is set to zero
in the Derivative action, which produces the well-known
Proportional controller plus velocity feedback.

Applying the Laplace transform to (9) leads to

U(s) =
1

b

[
KpE(s)−KdsQ(s)− D̂(s)

]
(10)

with E(s) = L {e}, E(s) = R(s) − Y (s), R(s) = L {r},
Q(s) = L {q}, and D̂(s) = L {d̂}.
On the other hand, the next expression describes the
dynamics of the DOB in Fig. 2

˙̂
d = −βd̂+ β[q̈ − bu] (11)

Substituting (9) into (11) yields

˙̂
d = β[q̈ −Kpe+Kdq̇] (12)
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Fig. 3. Weighted PID controller applied to a servo drive.

whose Laplace transform is given by

D̂(s) = βKdQ(s)− βKp
1

s
E(s) + βsQ(s) (13)

Substituting (13) into (10) boils down to

U(s) =
1

b
[KpE(s)− βKdQ(s)

+βKp
1

s
E(s)− (Kd + β)sQ(s)] (14)

Equation (14) corresponds to a weighted PID controller.
Fig.3 depicts a block diagram of this controller, and its
alternative writing in terms of weighted errors is

U(s) =
1

b

[
K̄pEp(s) + K̄i

1

s
E(s) + K̄dsEd(s)

]
(15)

where

Ep(s) = b̄R(s)−Q(s) (16)

E(s) =R(s)−Q(s) (17)

Ed(s) = c̄R(s)−Q(s) (18)

b̄=
Kp

Kp + βKd
(19)

c̄= 0 (20)

The terms Ep(s) = L {ep} and Ed(s) = L {ed} are
respectively the weighted errors used in the Proportional
and Derivative actions, and the weights are b̄ and c̄. Note
also that the error used in the integral action is not
weighted. On the other hand, the gains in (15) have the
following expressions

K̄p =Kp + βKd

K̄i = βKp (21)

K̄d =Kd + β

Therefore, the PD+DOB controller of Fig. 2 is equivalent
to a standard PID controller with weighted Proportional
and Derivative actions. This equivalence is true if velocity
measurements are available. However, in practice velocity
sensors are not available and then some kind of velocity
estimation will be needed. This issue will produce some
discrepancies between the responses of both controllers
as it will be shown in the experiments. Note also that
the tuning rules (21) of the weighted PID controller (15)
depends on the gains of the PD controller and on the
cutoff frequency of the filter used to construct the DOB.
In the sequel, this tuning will be called the DOB tuning.

Control 
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panel for the 

data acquisition 

card

Fig. 4. Experimental setup.

5. THE WEIGHTED PID CONTROLLER UNDER
THE DOB TUNING.

The next equation corresponds to the transfer function
of the plant (7) in closed loop with the controller (14)
without considering disturbances

G(s) =
Q(s)

U(s)
=
N(s)

D(s)
(22)

The polynomials in (22) are defined as

D(s) = s3 + (Kd + β)s2 + (Kp + βKd)s+ βKp

= (s+ β)(s2 +Kds+Kp) (23)

and

N(s) =Kps+ βKp

=Kp(s+ β) (24)

The fact that Kp, Kd and β are positive constants
guarantees that the poles of G(s) are stable when
applying the DOB tuning to the weighted PID controller.
The cutoff frequency β defines one pole of the closed
loop system, and the proportional and derivative gains
Kp and Kd sets the other two poles independently of β.
Hence, the desired transient response profile of the closed
loop system, i.e. if the response is underdamped, critically
damped or overdamped, is solely determined by Kp and
Kd. On the other hand, the numerator and denominator
of G(s) have a common root at s = −β, therefore, a
minimum representation of G(s) does not contain this
root.
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Table 1. Experimental results for the weighted
PID and PD+DOB controllers.

Experiment Kp Kd β ISE

1 PID 400 80 20 101.7836

2 PD+DOB 400 80 20 96.7817
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Fig. 5. Responses of the weighted PID and PD+DOB
controllers.
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Fig. 6. Closer look to the responses of the weighted PID
and PD+DOB controllers.

6. EXPERIMENTS

6.1 Experimental setup

Fig. 4 depicts the setup used in the experiments. It
consists of a brushed DC motor JDTH-2250-DQ-1C from
Clifton Precision driving a brass disk, a Servotek optical
encoder SA-7388-1 that measures the servomotor angular
position, a power amplifier Copley Controls 413 working
in current mode, and a box that galvanically isolates
a data acquisition card from the power amplifier . A
Servotogo card mounted inside a personal computer with
a Intel Core 2 quad processor is used for performing
data acquisition. All the programming is done using The
Mathworks Matlab/Simulink software together with the
real-time software WINCON from Quanser Consulting.
The Simulink diagrams use a sampling period of 1
ms and the Euler-ode1 integration method. The value
of the input gain in model (6) is b = 51.49. The
servomotor angular velocity q̇ is estimated from position
measurements through the next filter

Gv(s) =
300s

s+ 300

400

s+ 400
(25)

6.2 Comparative study using the weighted PID and
PD+DOB controllers

The following experiments show the performance of the
PD+DOb and the PID controllers applied to a servo
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Fig. 7. Error signals for the weighted PID and PD+DOB
controllers.

drive. The PID controller is tuned according to the
DOB tuning (21). The reference is a filtered step of 0.5
servomotor shaft revolutions. In order to evaluate large
position errors and excessive oscillatory responses, the
performance is measured using the Integral Squared Error
(ISE) index

ISE =

∫ T

0

100 [e(t)]
2
dt (26)

which is evaluated at T = 2s. Table 1 resumes the
outcomes of this experiments. Note that the PD+DOB
controller produces a slightly smaller value of the ISE
performance index. This result agrees with the step
responses in Fig.5 and 6, and the position error graphs in
Fig.7 , which show that the PD+DOB controller produces
a faster response than the one provided by the PID
controller. Interestingly enough, numerical simulations
not reported here for the sake of space, do not exhibit
differences in the response of these controllers when they
are simulated without velocity estimators. Therefore,
the dynamics of the filter (25) used to estimate the
servomotor angular velocity seems to affect in a different
way the behavior of both controllers. It is worth
remarking that in the PD+DOB controller the velocity
estimate produced by the filter is used to compute the
disturbance estimate whereas in the case of the PID
controller the velocity estimate only feeds the Derivative
action. It is reasonable to assume that other kinds of
velocity estimators like Luenberger observers and finite
differences-based estimators would also produce different
outcomes in these controllers. Fig.8 shows the signals
for both controllers. They are almost the same but the
peak in the PD+DOB controller signal is slightly higher
than the one observed in the PID controller signal. This
outcome also agrees with the quicker response observed
with the PD+DOB controller, i.e. it produces more
torque than the PID controller, which translates into a
faster response.

6.3 Experimental results with the weighted PID controller
using different values of the parameter β

The PID controller using the DOB tuning is evaluated
with respect to different values of the parameter β. In
addition to the ISE index (26), performance is assessed
through the Integral of the Absolute value of the Control
(IAC) and the Integral of the Absolute value of the
Control Variation (IACV) indexes defined as
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PD+DOB controllers.

Table 2. Experimental Results for the
weighted PID controller using the DOB

tuning.

Experiment Kp Kd β ISE IAVC IAC

1 400 80 0 100.9910 6.2421 0.1566

2 400 80 10 101.632 8.5889 0.1185

3 400 80 20 101.80848 9.1970 0.1354

4 400 80 30 101.9634 9.8852 0.140
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Fig. 9. Step response for the weighted PID controller
under the DOB tuning.
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Fig. 10. Control signals for the weighted PID controller
under the DOB tuning.

IACV =

∫ T

0

|u(t)| dt (27)

IACV =

∫ T

0

∣∣∣∣du(t)

dt

∣∣∣∣ dt (28)

where T = 2s. The filtered step response employed in the
first experiment is also applied here. Table 2 displays the
values of the performance indexes for several values of
β maintaining the same values of the proportional and
derivative gains Kp and Kd. The values of the ISE index
remain almost constant for all the tested values of β. On
the other hand, when β = 0, i.e., without integral action

the IAC index is higher than in the case of non-zero values
of β. If β increases so do the IAC and IACV indexes. Fig.9
and 10 depict the responses of the servo drive as well as
the respective control signals. No significant change in
response is observed when β is increased. These outcomes
show that low values of β, which translates into low
values of the PID controller gains, produce reasonable
performance.

7. CONCLUSIONS

This work shows preliminary results on a tuning rule
called de DOB tuning, for weighted PID controllers
applied to servo drives. This rule is obtained by showing
the equivalence between a PD controller endowed with
a disturbance observer (DOB), called the PD+DOB
controller, and a weighted PID. This equivalence is true
under the assumption that velocity measurements are
available. The experiments show the following results.
Both controllers produce smooth responses without
overshoot and display essentially the same performance
in terms of the Integral Squared Error (ISE) index, and
slight discrepancies exist due to the effect of the filter used
to estimate the servomotor angular velocity. Moreover,
increasing the value of the β term used in the DOB
tuning, which corresponds to the cutoff frequency of the
DOB in the PD+DOB controller, does not significantly
improves closed-loop performance. Therefore, large gains
in the weighted PID controller are not necessary to obtain
reasonable performance. Future work includes using the
weighted PID controller under the DOB tuning when
the servomotor is affected by more complex disturbances.
The effect on closed-loop performance of other velocity
estimators would be worth studying.
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Åström, K.J. and Hägglund, T. (1995). PID controllers:
theory, design, and tuning, volume 2. Isa Research
Triangle Park, NC.

Ellis, G. (2012). Control system design guide: using
your computer to understand and diagnose feedback
controllers. Butterworth-Heinemann.

Gao, J., Tao, T., Mei, X., Jiang, G., Xu, M., and Li, Z.
(2013). A new method using pole placement technique
to tune multi-axis pid parameter for matched servo
dynamics. Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering
Science, 227(8), 1681–1696.

Johnson, C. (2008). Real-time disturbance-observers;
origin and evolution of the idea part 1: The early years.
In System Theory, 2008. SSST 2008. 40th Southeastern
Symposium on, 88–91. IEEE.

Kelly, R. (1995). A tuning procedure for stable pid control
of robot manipulators. Robotica, 13(2), 141–148.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

99



Kim, B.K. and Chung, W.K. (2003). Advanced
disturbance observer design for mechanical positioning
systems. IEEE Transactions on Industrial Electronics,
50(6), 1207–1216.

Lee, H.S. and Tomizuka, M. (1996). Robust motion
controller design for high-accuracy positioning systems.
IEEE Transactions on Industrial Electronics, 43(1),
48–55.

O’Dwyer, A. (2009). Handbook of PI and PID controller
tuning rules. World Scientific.

Ohishi, K., Ohnishi, K., and Miyachi, K. (1988). Adaptive
dc servo drive control taking force disturbance
suppression into account. IEEE Transactions on
Industry Applications, 24(1), 171–176.

Ohnishi, K., Shibata, M., and Murakami, T.
(1996). Motion control for advanced mechatronics.
IEEE/ASME Transactions On Mechatronics.

Pounds, P.E., Bersak, D.R., and Dollar, A.M. (2012).
Stability of small-scale uav helicopters and quadrotors
with added payload mass under pid control.
Autonomous Robots, 33(1-2), 129–142.

Rocco, P. (1996). Stability of pid control for industrial
robot arms. IEEE transactions on robotics and
automation, 12(4), 606–614.

Skogestad, S. (2001). Probably the best simple pid tuning
rules in the world. In AIChE Annual Meeting, Reno,
Nevada.

Spong, M.W. and Vidyasagar, M. (1989). Robot
Dynamics and Control. Wiley, New York.

Visioli, A. (2006). Practical PID control. Springer Science
& Business Media.

Yamada, K., Komada, S., Ishida, M., and Hori, T.
(1997). Analysis and classical control design of servo
system using high order disturbance observer. In
Industrial Electronics, Control and Instrumentation,
1997. IECON 97. 23rd International Conference on,
volume 1, 4–9. IEEE.

Zheng, M., Zhou, S., and Tomizuka, M. (2017). A
design methodology for disturbance observer with
application to precision motion control: An h-infinity
based approach. In American Control Conference
(ACC), 2017, 3524–3529. IEEE.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

100


