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Abstract: Control of propofol anesthesia is characterized by large variability in individual
responses to drug infusion, relatively simple system dynamics and relatively low performance
criteria. Robust PID control can be expected to provide adequate control given these character-
istics. While feasibility of robust PID control of propofol anesthesia has been shown in clinical
trials, controllers that use an explicit model might provide additional valuable characteristics.
This paper examines the performance achieved with a manually tuned robust PID controller
and a higher-order Q-design controller. The additional degrees of freedom in the Q-design
allow an increase in the robustness margin, at the cost of decreased gain at low frequencies
and corresponding increased time to induction of anesthesia. These results indicate that the
uncertainty introduced by interpatient variability is an important factor limiting closed-loop
performance. Performance improvement from increased controller complexity may therefore be
limited, unless strategies aimed at reducing the uncertainty are implemented.
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1. INTRODUCTION

General anesthesia as routinely used in the operating room
is induced by administering a combination of drugs. The
anesthesiologist, who is responsible for the patient’s safety
while in the operating room, carefully doses these drugs
based on knowledge of the drug effect and the observed
response of the patient. Due to the dynamics of the drug
effects and large inter-patient variability, this requires
repeated manual adjustments. Closed-loop technology can
provide performance and safety improvements, by taking
over low-level repetitive tasks of drug dosing adjustments,
while the anesthesiologist can focus on the high-level tasks
(Bibian et al. (2005)). Feasibility of closed-loop propofol
infusion has been shown in various trials (e.g. Liu et al.
(2006); Sawaguchi et al. (2008); Gentilini et al. (2001);
Puri et al. (2015)). Closed-loop control was shown to
outperform manual control in terms of time in range of
adequate anesthesia (Liu et al. (2006); Puri et al. (2015);
Brogi et al. (2016); Pasin et al. (2016)).

Control of anesthesia is characterized by uncertain but
relatively simple dynamics (stable, minimum phase, non-
oscillatory) and relatively low performance criteria (stan-
dard practice corresponds to manual control). A well de-
signed PID controller can be expected to provide adequate
robust control for a system with these characteristics. We
have shown feasibility of robust PID control of propofol
anesthesia in simulation (Dumont et al. (2009)) and in
clinical trials in adults and children (Dumont et al. (2011);
West et al. (2017); van Heusden et al. (2014)).
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Robust PID control has been shown to provide ade-
quate control performance for propofol anesthesia, how-
ever, higher-order controllers might improve performance
and control techniques based on explicit models might
provide valuable additional characteristics. Model predic-
tive control (MPC) for example provides straightforward
extensions for multi-drug systems and safety constraints.
Furthermore, additional degrees of freedom introduced by
higher-order controllers may improve controller perfor-
mance. MPC has been suggested for control of anesthesia
in simulation, with limited uncertainty (Ionescu et al.
(2008)). Sawaguchi et al. (2008) used an adaptive version
of MPC in a clinical trial.

The goal of this paper is to compare the performance of
a manually-tuned higher-order model-based controller to
the performance of a PID controller that we have eval-
uated in clinical trials. Controller tuning in MPC is not
straightforward, and the effect of the choice of a nominal
model cannot easily be distinguished from the effect of the
controller tuning. We therefore evaluate the performance
of a model-based design using the affine parametrization
(Goodwin et al. (2001)). This technique, also known as
Q-design of Internal Model Control, is closely related to
unconstrained MPC (Garcia et al. (1989)), however, the
design trade-off and robustness criteria are explicit func-
tions of the model uncertainty. The robust PID controller
for propofol anesthesia in children as described by van
Heusden et al. (2014) is compared to a Q-design based
on the model set described by van Heusden et al. (2013).

Section 2 describes the control setup and objectives. The
robust PID design is summarized in Section 2.3. Q-design
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Fig. 1. Block diagram representing closed-loop propofol
anesthesia.

is described in Section 3 and used in Section 4 to design a
model-based controller for propofol anesthesia. The nom-
inal model and uncertainty description required for this
design are described in Section 4.1. Control performance
of the PID and Q-design controllers is evaluated in Section
5. The results are discussed in Section 6.

2. ROBUST PID DESIGN FOR PROPOFOL
ANESTHESIA

2.1 Control of propofol anesthesia

Consider the simplified closed-loop setup for propofol anes-
thesia shown in Fig. 2.1. The user defined setpointDOHset

is compared to the measured depth of hypnosis (DOH),
and drug infusion to the patient is determined by a 1
degree-of-freedom feedback controller K. The measured
DOH is affected by disturbances d(t) and measurement
noise n(t). In this simplified setup, any dynamics intro-
duced by the DOH monitor are assumed to equal unity,
and a feedforward term or 2 degree-of-freedom controller
implementation that uses a filtered setpoint DOHset are
not taken into account. This simplified setup is used to
compare PID and model-based control. Any performance
improvements provided by feedforward or setpoint filtering
can be applied to either controller.

Processed electroencephalography (EEG) DOH monitors
provide a measure on a scale from 0-100, where 0 cor-
responds to iso-electric EEG, and values between 90-100
correspond to awake EEG. Indices between 40-60 are as-
sociated with adequate anesthesia. During induction of
anesthesia, the patient DOH index is lowered from ≈ 90
to 40-60, corresponding to a step response. Disturbances d
as a result of surgical stimulation increase the DOH index.

Patient responses to propofol anesthesia can be modeled
using pharmacokinetic-pharmacodynamic (PKPD) mod-
els. Propofol PK is commonly modeled using a three-
compartment model. Propofol PD can be described by a
first-order model with a time delay, followed by a nonlinear
response function. In this study, the model set described
by van Heusden et al. (2013) is used where the PD model
is linearized for induction of anesthesia.

2.2 Control objectives

Closed-loop control for propofol anesthesia needs to pro-
vide sufficiently fast induction of anesthesia, while limiting
the overshoot. Slow induction of anesthesia may delay
securing of the airway, and compromise patient safety.
It could also delay the start of the procedure, which is
clinically undesirable and could delay the operating room.
A large overshoot in DOH following induction of anesthe-
sia is associated with significant blood pressure decreases,

particularly in adults. In children, blood pressure changes
are less pronounced and more overshoot can be tolerated
to increase speed of induction of anesthesia and reduce
patient discomfort. During maintenance of anesthesia, the
controller needs to provide fast disturbance rejection with-
out introducing significant overshoot.

2.3 Robust PID control for propofol anesthesia in children

A robust PID controller was designed for propofol anes-
thesia in children by van Heusden et al. (2014), and this
controller was evaluated in a clinical study including 71
cases. This controller was designed using a subset of the
model set described by van Heusden et al. (2013). The
controller was manually tuned.

This manual design was based on 28 patient models, lin-
earized for induction of anesthesia. Robustness was evalu-
ated in the frequency domain, using the corresponding fre-
quency response functions, and the controller was designed
to achieve sufficient phase and gain margins. Performance
was evaluated based on the time-domain response of the
linear and nonlinear models, during induction of anesthe-
sia and following disturbances. During clinical evaluation
in 71 cases, the time to achieve induction of anesthesia was
(median (min, max)) 3.6 (1.3, 6.1) minutes 1 . The time
spent within 10 units of the setpoint was (median (min,
max)) 89 (52, 100) %.

An optimization based PID tuning method was proposed
for propofol anesthesia by Soltesz et al. (2016). This
method aims to maximize the integral gain of the con-
troller, which corresponds to minimizing the integral error
following a load step disturbance. Robustness is guar-
anteed by limiting the peak of the sensitivity function,
given either a multi-model uncertainty or a nominal model
with unstructured uncertainty. The optimal controllers
described by Soltesz et al. (2016) showed strong simi-
larity with the manually tuned PID controller, both in
the frequency response function and the closed-loop time
responses. While the robust PID controller assessed in
this paper is manually tuned, this manual design is close
to optimal, considering maximization of the integral gain
while limiting the peak sensitivity.

3. ROBUST MODEL-BASED DESIGN USING
AFFINE PARAMETRIZATION

Assume that the uncertain plant Gp(z) is described by a
multiplicative uncertainty description;

Gp(z) = Go(z)(1 + wI(z)∆(z)),

where the unstructured uncertainty is bounded |∆(jω)| 6
1, ∀ω , Go(z) represents the nominal model and wI(z) the
multiplicative uncertainty weight. Assume that the user-
defined robust performance objective is defined as wP (z).

3.1 Robust Q-design

Q-design is based on the following affine controller
parametrization:

1 Time to induction of anesthesia was defined as the time from the
start of propofol infusion, to the moment the DOH reaches 60 and
remains below 60 for 30 seconds.
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Q(z) =
C(z)

1 + C(z)Go(z)
. (1)

The controller that is indirectly defined by (1) stabilizes
a stable, linear, time-invariant nominal plant Go(z) if
and only if Q(z) is stable and proper. Furthermore, this
parametrization describes all stabilizing controllers (Good-
win et al. (2001), ch. 15). The sensitivity function So and
the complementary sensitivity function To of the controlled
nominal plant Go are linear in Q(z);

To(z) = Q(z)Go(z),

So(z) = 1−Q(z)Go(z).
Controller design is reduced to the design of Q(z), which
can be used to shape one sensitivity function.

In the presence of multiplicative uncertainty, robust per-
formance is guaranteed if (Skogestad and Postlethwaite
(2007))

max
ω

(|wP (z)So(z)|+ |wI(z)To(z)|) < 1.

Using the affine parametrization, this robustness criterion
is given by

max
ω

(|wP (z)(1−Q(z)Go(z))|+ |wI(z)Q(z)Go(z)|) < 1.

Controller design is then reduced to the design of Q(z) to
achieve a desired sensitivity function, while meeting this
robustness constraint.

3.2 Robust Q-design in the presence of a time delay

Q-design can easily be extended to stable, minimum phase
systems with a time delay (Goodwin et al. (2001)). Define

Go(z) = z−dGo(z),

where d is the time delay, andGo(z) represents the nominal
model without time delay. Q(z) can then be evaluated as

Q(z) =
C(z)

1 + C(z)Go(z)

(Goodwin et al. (2001), ch. 15.5), which leads to a Smith
controller form. In this case, the nominal complementary
sensitivity is given by

To(z) = z−dQ(z)Go(z)

and the sensitivity by

So(z) = 1− z−dQ(z)Go(z).

Since Go(z) and its inverse are stable, any stable proper
Q(z) defines a stabilizing controller and Q(z) can be
chosen as

Q(z) = FQ(z)[Go(z)]
−1. (2)

The nominal sensitivity and complementary sensitivity
then simplify to

So(z) = 1− z−dFQ(z)

and
To(z) = z−dFQ(z).

Design of a controller that achieves robust performance
simplifies to designing FQ(z) such that

max
ω

(|wP (z)(1− z−dFQ(z))|+ |wI(z)z
−dFQ(z)|) < 1. (3)

Note that the limitations due to the uncertainty are ex-
plicit in this design, and directly linked to the design
variable FQ. The only limitations to the achievable per-
formance are the time delay and the uncertainty weight
wI(z). In the following, this condition will be approxi-
mated on a finite frequency grid.
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Fig. 2. Nyquist plot of the loop function with KPID for
the 47 individual pediatric models (grey), the optimal
nonparametric nominal model Gnpped

(blue) and the
fourth order parametric model Go (red dashed). The
bounds of the unstructured uncertainty description of
the loop function are shown for both Gnpped

and Go

in blue and red respectively.

4. Q-DESIGN FOR PROPOFOL ANESTHESIA

4.1 Nominal model and uncertainty description

The Q-design controller in this paper is based on the
model set described by van Heusden et al. (2013). This
set includes the models used to design the PID controller
described in Section 2, as well as additional models iden-
tified from data from a clinical study evaluating this PID
controller. The inter-patient variability is characterized by
a multi-model description. There are numerous ways to
define a nominal model from this description. In Bibian
et al. (2006), the uncertainty region was approximated
by the smallest circle in the Nyquist plot that encom-
passed the lowest and highest gains combined with the
lowest and highest phase at each frequency. A full order
frequency domain model minimizing the uncertainty was
identified. A rational function was then identified from
this frequency domain model. In Dumont et al. (2009),
a low-order nominal model was identified directly using
non-convex gradient based constrained optimization.

In this study, we identify the optimal full order nominal
model using convex optimization. In a second step a low-
order parametric model is identified. This method allows
for the evaluation of optimality; the nonparametric model
is optimal and conservatism introduced by the low-order
approximation can be evaluated.

Consider the additive uncertainty description

Gp(e
−jωk) = Gnp(e

−jωk) + wAnp
(e−jωk)∆A(e

−jωk);

|∆A(e
−jωk)| 6 1, ωk ∈ Ω, (4)

where Gp, for p ∈ [1, nP ] describe the individual patient
models for nP patients, the number of models in the
set. Gnp(e

−jωk) is the optimal frequency domain model,
wAnp

(e−jωk) is the uncertainty weight at frequency ωk and
∆A describes the unstructured uncertainty.

Identification of Gnp(e
−jωk) at frequency ωk that mini-

mizes wAnp
is a convex optimization problem (Hindi et al.

(2002)) and can be solved efficiently for a large number
of frequencies (Löfberg (2004)). Given the model set Gp,
the optimal nonparametric nominal model optimizes the
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following problem at each frequency ωk ∈ Ω:

min
wAnp ,Gnp

wAnp
(e−jωk)

s.t.

|Gp(e
−jωk)−Gnp(e

−jωk)| 6 wAnp
(e−jωk).

(5)

In the second step, a low-order discrete parametric nomi-
nal modelGo(z) with a sampling interval of Ts = 5 seconds
is identified from Gnp. The corresponding multiplicative
uncertainty weights are calculated according to

Gp(e
−jωk) = Go(e

−jωk)(1 + wI(e
−jωk)∆I(e

−jωk));

|∆I(e
−jω)| 6 1, ωk ∈ Ω. (6)

The model set described by van Heusden et al. (2013) con-
tains 47 individual responses from children age 6 - 16 years.
The models are linearized for induction of anesthesia. The
model input is scaled to body weight. The output is scaled
to 1 − WAVCNS/100. The frequency response data for
each model are generated on a finite frequency grid for a
sampling time Ts = 5s:

ωk =
π

Ts

k

2048
, k ∈ [0, 2048], (7)

At each frequency ωk, Gnp(e
−jωk) optimizing (5) is calcu-

lated.

The individual patient models Gp contain time delays.
For the second step, the time delay for the low-order
nominal model is estimated from the impulse response of
Gnp, calculated through its inverse Fourier transform. The
delay is estimated to be 5 seconds. A discrete model with
Ts = 5 and τd = 1 is estimated from the frequency domain
model using the output error approach. Different initial
conditions were used, the stable model Go that achieved
the best fit is given in equation (8).

Adequacy and conservatism of the unstructured uncer-
tainty model are evaluated using the loop function with
the clinically evaluated robust PID controllerKPID. Fig. 2
shows the individual loop functionsKPIDGp, as well as the
loop function KPIDGnp with the optimal nonparametric
nominal model Gnp, and the loop function KPIDGo with
the nominal model and their corresponding unstructured
uncertainty.

The predicted margins of KPID are significantly smaller
for the unstructured uncertainty models than for the
multi-model approach. Most of the conservatism is intro-
duced by the unstructured uncertainty rather than by the
low-order approximation. The assumption of unstructured
uncertainty introduces an overestimation of M , the maxi-
mum amplitude of the sensitivity function, as reflected by
the reduced distance to the critical point -1; the predicted
M increased from ≈ 2 for the multi-model representation
to ≈ 3.5 for the unstructured uncertainty.

4.2 Controller design

The performance objective is formulated according to
Skogestad and Postlethwaite (2007), Ch. 2.7 as

wP (s) =
s/M + ωB

s+ ωBA
,

and evaluated at ωk as defined in Section 4.1. M corre-
sponds to the worst case maximum amplitude of the sen-

sitivity function, ωB represents the minimum bandwidth
and A the maximum steady-state tracking error.

To achieve the clinical control objectives discussed in
Section 2.2, the bandwidth of the closed-loop system
is maximized while limiting the maximum amplitude of
the sensitivity function. The controller is designed using
a manual approach; wP and a low-order filter FQ are
designed iteratively to maximize the bandwidth while
satisfying the robust performance criteria (3). In addition
to this robust performance criterion, performance was
evaluated in the time domain by evaluating the response
during induction of anesthesia of all models in the multi-
model description.

Following this iterative procedure, wP (z) was defined as
ωB = 0.0015, A = 0.01 and M = 3.5, similar to the
margin achieved by the pediatric PID controller. FQ was
chosen as a fourth order filter with unity steady-state gain,
two real and two complex poles. To achieve a sufficiently
fast induction of anesthesia, the nominal complimentary
sensitivity function allows for significant overshoot; the
complex poles of FQ were placed at ω = 0.0079 with
a damping factor of 0.62. The real poles were placed at
0.6 and 0.7. A zero was added at 0.9 to reduce the roll-
off around the bandwidth and reduce the peak of the
sensitivity function. The resulting controller is given by
CPed(z

−1) in equation (8).

Fig. 3 shows the designed nominal complementary sen-
sitivity function To as well as T for the nominal model
achieved with the PID controller. The peak value of To is
reduced in the Q-design compared to the PID design. The
frequency domain characteristics of the Q-design controller
CPed and PID controller are similar between ≈ 0.005−0.2
rad/s, see Fig. 4. At low frequencies, the gain of CPed

is lower than the PID gain, while the roll-off at high
frequencies is smaller; the PID controller contains a noise
filter that is not taken into account in this Q-design.

5. RESULTS: CLOSED-LOOP PERFORMANCE

The characteristics of the two design methods are sum-
marized in Table 1. Fig. 5 shows the response of the set
of linearized pediatric models controlled by the Q-design
(CPed) and PID controller (KPID) to a step change in
the reference signal of 50, corresponding to induction of
anesthesia. CPed reduces the overshoot, but induction of
anesthesia is slower. Several subjects have an induction
time of more than 5 minutes, which is clinically not de-
sired. Note that the nominal response does not reflect the
average response for the population. The speed of the de-
signed response is therefore not achieved for the majority
of individual models. Fig. 6 shows the performance criteria
as well as the achieved performance for the nominal models
and the original multi-model sets. While the bandwidth of
the nominal design is sufficient, the achieved bandwidth
for most subjects is smaller than the nominal design. Fur-
thermore, ωB, the minimum bandwidth used for design,
strongly underestimates the nominal bandwidth as well
as the bandwidth achieved for the multi-model set. The
maximal amplitude of the sensitivity function evaluated
over the multi-model set is much smaller than M = 3.5 as
used in the design, reflecting the conservatism introduced
by the unstructured uncertainty.
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Go(z
−1) =

0.00122z−1(1− 0.9995z−1)(1 − 0.9916z−1)

(1 − 0.9997z−1)(1− 0.9960z−1)(1 − (0.9737 + 0.0159i)z−1)(1 − (0.9737 − 0.0159i)z−1)
. (8)

CPed(z
−1) =

1.4945(1 − 0.90z−1)(1 − 0.9997z−1)(1 − 0.9960z−1)(1 − (0.9737 + 0.0159i)z−1)(1 − (0.9737 − 0.0159i)z−1)

(1− z−1)(1 − 0.9995z−1)(1 − 0.9916z−1)(1 − 0.9617z−1)(1 − 0.6718z−1)(1 − 0.6190z−1)
(9)
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Fig. 3. Top: Controller design for the nominal pediatric
model and uncertainty. The nominal complementary
sensitivity To as designed using Q-design is shown
in red, T for the nominal model achieved with the
PID controller in black, the inverse of the uncertainty
weights WI is shown in blue. Bottom: Robust perfor-
mance criteria (3) as a function of frequency, for the
PID controller (black) and the Q-design (red).
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Fig. 4. Bode diagrams of the Q-design controller (red) and
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PID Q-Design

Tuning Manual Manual

Parameters 2-DOF PID parameters ωp and FQ

and filter

Uncertainty Multi-model Unstructured

Design criteria Maximize integral gain, Maximize bandwidth,
limit peak sensitivity robust performance

Performance Time domain response Robust performance,
evaluation time domain response

Table 1. Summary of design methods

6. DISCUSSION

Control of anesthesia is characterized by large uncertainty.
Robust PID control can therefore be expected to provide
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Fig. 5. Response to induction of anesthesia of the 47 lin-
earized pediatric models controlled by KPID (black)
and the Q-design controller (red dashed). The nomi-
nal response of the Q-design controller is indicated in
blue.
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Fig. 6. Achieved sensitivity with Q-design: nominal per-
formance (red), 1/wP (blue), and the achieved per-
formance for the multi-model set (grey).

adequate robust control. In this paper, the performance of
a robust PID controller, which has been shown to be close
to optimal, was compared to a manually tuned sixth-order
model-based controller. The behaviour of these controllers
was similar at higher frequencies. At lower frequencies,
the PID gain was higher than the gain of the model-
based controller. The additional degrees of freedom in the
higher-order model-based controller allow an increase in
robustness margins by increasing the phase margin, at
the cost of decreased gain at low frequencies. Simulated
time-domain responses to induction of anesthesia show
a corresponding reduction in overshoot, at the cost of
increased time to induction. These results indicate that
the uncertainty introduced by interpatient variability is
indeed an important factor limiting the achievable closed-
loop performance, and that performance improvement
from additional controller complexity may be limited.
Model-based methods such as MPC may be beneficial for
extensions to multi-drug systems or the inclusion of safety
constraints.

It should be noted that both the PID controller and the
model-based controller were manually tuned, based on
the same design objective but different design criteria.
An optimization based approach would provide a more
accurate comparison, however, this would require a PID
and a model-based design method that aim to optimize
the exact same criteria.

The PID controller was tuned using a multi-model un-
certainty description, while the model-based controller
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required an unstructured uncertainty description, which
introduced conservatism. A model-based design that uses
unstructured uncertainty to evaluate robust stability, but
that evaluates robust performance using a multi-model
approach may reduce the conservatism. Alternative strate-
gies aimed to reduce the uncertainty, for example using
patient demographics (Bibian et al. (2006)), may allow for
improved performance.

The choice of a nominal model is essential for model-
based design. The designed nominal closed-loop was not
reflective of the response of the model set. Although the
nominal model used in this paper minimizes the modeling
error, model-based design might be simplified when using
a nominal model that minimizes a closed-loop error rather
than the modeling error (Douma and Van den Hof (2005);
Oomen and Bosgra (2012)).
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