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Abstract: Internal model control (IMC) structure is derived from classical control by introducing the
model of plant in the control loop and thereby having significant advantages over classical control such
as dual stability, perfect control and zero-steady state offset. The basic one degree of freedom (ODF)
IMC provides good compromise between set-point tracking and disturbance rejection and works well
for non-minimum phase (NMP) systems. In this work, an IMC based fractional order (FO) controller is
designed for NMP system which satisfy desired phase margin (φm) at a desired gain-crossover frequency
(ωg). The domain of desired φm and ωg is provided from which they can be selected. Simulation studies
are done for (i) DC-DC boost converter which is a NMP system with one zero in right half of s-plane
and (ii) first order plus time delay (FOPTD) system which is also a NMP system because of the delay.
Significance of the proposed methodology is verified by comparing with other well-known techniques in
IMC based on the performance measures, such as rise time (Tr), settling time (Ts) and overshoot (%Mp)
and performance indices such as integral square error (ISE), integral absolute error (IAE) and integral
of the time weighted absolute error (ITAE).

Keywords: Internal model control (IMC), fractional order (FO) control, non-minimum phase (NMP)
systems, phase margin, gain cross-over frequency.

1. INTRODUCTION

Though the fractional order (FO) calculus is an old concept in
mathematics, it is new in engineering domain. Only for last
three decades application of FO is increasing in engineering
as it is proved to be an effective way to represent physical
systems and it provides more flexibility with more number of
parameters to tune in controller design over their integer order
(IO) counterpart (S. Das , 2011) . For example fractional order
PID (FOPID) have five parameters to tune whereas integer
order PID (IOPID) has only three, therefore the flexibility in
design is more, and more specifications can be incorporated
with the FOPID controller (Monje et al , 2010).

IMC is an old concept proposed by Garcia et al. (1982), Garcia
et al. (1986) and Rivera et al. (1986), which incorporates
the model of the plant in the control loop. IMC controller
design technique is based on pole-zero cancellation, and the
controller constitutes the inverse of the minimum phase part
of the plant model and a filter. The order of the filter is
such that the controller becomes proper (Morari & Zafiriou ,
1989). This filter can be integer order (IO) or FO. In IO filter
there is only one tuning parameter which is tuned to achieve
satisfactory response of the systems, whereas FO filter provides
one extra degree of freedom, i.e, the filter has two parameters
to tune, therefore providing more flexibility in design. In this
work FO filter is used and two parameters are tuned to satisfy
desirable phase margin (φm) and gain-crossover frequency (ωg)
specifications simultaneously. With IO filter, however, only one
of the above specifications can be satisfied (Morari & Zafiriou ,
1989).

Since IMC is obtained by introducing the model of the plant
in the control loop of the classical control structure, therefore
IMC can be reduced to its equivalent classical control structure
(Rivera et al. , 1986). However, IMC also has the advantage
that it can provide simple and elegant solution to design H2
optimal controller (Zhang et al. , 2006) in frequency domain,
which is not possible using a classical controller. Though there
are some advantages, however IMC also has its own issues to
be taken care of. It is observed that with RHP zeros in the
plant then model uncertainty amplifies high frequency noise
as the overall system is sensitive with respect to change in
plant at high frequencies. This noise amplification for systems
with RHP zero can be avoided by designing IMC controller by
first multiplying the numerator and denominator of the system
transfer function by the conjugate of the RHP zero.

IMC has been proved to be successful in a wide area of control
applications, such as process control (Datta et al. , 2015), (Li et
al. , 2009), electrical drive systems (Sun et al. , 2016), (Zhu et
al. , 2016), power systems (Tan , 2010), signal processing (Tan
and Fu , 2016) and power electronics (Kobaku et al. , 2017),
etc. Much research work has been carried out for analyzing and
improving IMC such as anti-windup control design for IMC
(Zheng et al. , 1993), for improving filter (Horn et al. , 1996),
(Liu and Gao , 2010), H∞ controller design for IMC (Dehghania
et al. , 2006), adaptive IMC (Datta and Ochoa , 1996), (Datta
and Xing , 1998), (Hu and Rangaiah , 1999), IMC for gain
margin and phase margin specifications (Kaya , 2004), (Ho et
al , 2001), etc.

IMC technique works very well for stable, minimum phase and
NMP processes. But the design flexibility of the traditional IMC
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Fig. 1. (a) IMC control and (b) Equivalent classical control

with IO filter is limited because of the presence of only one
tuning parameter. In this work a FO filter is proposed to increase
the flexibility of the controller with two tuning parameters
to satisfy independent choice in the selection of φm and ωg.
The significance of the proposed control strategy is verified on
two different systems: (i) a DC-DC boost converter and (ii) a
FOPTD system. The comparison are made for Tr, Ts, %Mp and
performance are measured with performance indices, ISE, IAE
and ITAE.

The contents of the paper are as follows: In Section-2, funda-
mentals of IMC is discussed. In Section-3, controller design
steps and guidelines on selection of φm and ωg and robustness is
discussed and in Section-4 simulation studies with performance
measures and discussion on the controller is done. In Section-5
conclusions are made.

2. FUNDAMENTALS OF IMC

The block diagram of IMC is given in Fig.1(a), which can be
reduced to the classical control structure, as in Fig.1(b). Gp(s) is
the actual plant, Ĝ(s) is the plant model, Gd(s) is a disturbance
transfer function and Q(s) is the IMC controller. The design of
Q(s) constitutes of two steps: (i) determination of the inverse of
the minimum phase part of the process model and selection of
the filter and (ii) finding the filter parameters for desired system
performance.

The plant and plant model can be segregated into minimum
phase and non-minimum phase parts as

Gp(s) = Gpm(s)Gpa(s) (1)

Ĝ(s) = Ĝm(s)Ĝa(s) (2)
It is assumed that the plant model is known, therefore, Gp =

Ĝ or Gpm = Ĝm, and Gpa = Ĝa. The subscript ′m′ shows
minimum-phase (MP) part and subscript ′a′ shows NMP part
of the plant. The controller Q(s) is

Q(s) = f (s)(Ĝm(s))−1 (3)

where (Ĝm(s))−1 is inverse of the minimum phase part of the
plant model and f (s) is a filter. The order of the filter is such
that it results in a proper Q(s). In this work fractional filter is
selected as

f (s) =
1

λ sβ +1
, β ∈ (0,2), λ > 0 (4)

Since the filter design allows for tuning two parameters, ide-
ally two design specifications form the above can be selected

independently. In this work λ and β are tuned to satisfy desired
phase margin and gain cross-over frequency of the controlled
system. Note that when β = 1, we get the traditional IO filter,
and only one design specification can be satisfied by tuning λ .
So the classical IO filter is included as a subset of the FO filters.

The IMC controller can easily be converted into classical con-
troller, as in Fig.1(b), where (Morari & Zafiriou , 1989)

C(s) =
Q(s)

1−Q(s)Ĝ(s)
(5)

Substituting (3) in (5), the controller becomes

C(s) =
f (s)

1− f (s)Ĝa(s)
(Ĝm(s))−1 (6)

3. CONTROLLER DESIGN

Systems having one or more zeros in RHP are called NMP
systems. Dead time or transport lag also has NMP character,
as it has excessive phase lag in high frequencies. In this work
two types of systems with NMP behavior are considered. First
is a system with one RHP zero and the second is first order plus
time delay (FOPTD). The controller is tuned to satisfy desired
φm and ωg. Mathematically the specifications can be written as,

Specification-I
arg[L( jω)]|ω=ωg =−π +φm (7)

Specification-II
|L( jω)||ω=ωg = 1 (8)

where L(s) is open loop transfer function referring to Fig.1(b),
φm is desired phase margin and ωg is desired gain cross-over
frequency.

3.1 System-I

The first system is a second order system with one zero in RHP
having transfer function model

Gp(s) =
k(as+1)(−bs+1)

s2 + cs+d
(9)

Assuming accurate modeling, i.e. Gp(s) = Ĝ(s), where Gp(s)
is the actual plant and Ĝ(s) is the model, the MP and NMP parts
of the model can be segregated as

Ĝm(s) = Gpm(s) =
k(as+1)

s2 + cs+d
(10)

and
Ĝa(s) = Gpa(s) =−bs+1 (11)

The open loop transfer function (Fig.1(b)) is given as
L(s) =C(s)Gp(s) (12)

Now, substituting f (s) from (4) in (6) we have

C(s) =
1

λ sβ +1− Ĝa(s)

(
Ĝm(s)

)−1
(13)

Therefore, open loop transfer function becomes

L(s) =
Ga(s)

λ sβ +1− Ĝa(s)
(14)

Substituting Ĝa(s) = Gpa(s) = −bs+ 1 from (11) in (14), we
have

L(s) =
−bs+1
λ sβ +bs

(15)
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Substituting s = jω in (15) we get

L( jω) =
1− j(bω)

(λωβ cos(βπ

2 ))+ j(λωβ sin(βπ

2 )+bω)
(16)

To satisfy φm and ωg criteria, equation (16) should follow (7)
and (8). From (7) and (16), we have

−tan−1(bωg)− tan−1

(
λω

β
g sin βπ

2 +bωg

λω
β
g cos βπ

2

)
=−π +φm

solving for λ in terms of β we get

λ =
−bωg

ω
β
g

(
sin βπ

2 −Acos βπ

2

) (17)

where A = tan(π − φm − tan−1(bωg)). From (8) and (16) we
have √

1+(bωg)
2√(

λω
β
g cos βπ

2

)2
+
(

λω
β
g sin βπ

2 +bωg

)2
= 1

Simplifying above equation it will result into a quadratic equa-
tion in λ as

Pλ
2 +Qλ +R = 0 (18)

where, P = ω
2β
g , Q = 2bω

β+1
g sin βπ

2 and R = −1 The roots of
(18) is given as

λ =
−Q±

√
Q2−4PR

2M
(19)

Graphical technique is used to solve (17) and (19) simultane-
ously. A λ vs. β plot is obtained from (17) and (19) by varying
β ∈ (0,2). The intersection point of curve for (17) and the curve
for (19) will be the solution, i.e, the set of obtained λ and β will
satisfy (7) and (8) simultaneously. It can be noted that the range
of β from 0 to 2 is observed to satisfy required conditions that
(a) the IMC controller is proper, (b) the system is closed loop
stable and (c) the solution exists for (17) and (18) to satisfy
desired φm and ωg.

Discussion-I: The controller C(s) in (13) can be considered as
PID controller plus a combination of IO and FO filter.
Proof: From (13) we have,

C(s) =
1

λ sβ +1− Ĝa(s)

(
Ĝm(s)

)−1
(20)

substitute e−θs =−θs+1 and Ĝm(s) from (10), we get

C (s) =
s2 + cs+d(

λ sβ +θs
)

k (as+1)
(21)

simplifying in form of PID and filter we can easily get

C (s) = Kp1

(
1+Kd1s+

1
Ki1s

)
1(

T11sβ−1 +1
)
(T12s+1)

(22)
where, Kp1 =

c
θk , Kd1 =

1
c , Ki1 =

c
d , T11 =

λ

θ
and T12 = a.

3.2 System-II

A FOPTD plant can be written as

Gp(s) =
k

τs+1
e−θs (23)

Assuming exact modeling of the plant, i.e. Ĝ = Gp, where, Ĝ is
the plant model and Gp is the actual plant, the minimum phase
and non-minimum phase parts of the plant and plant model are

Ĝm(s) = Gpm(s) =
k

τs+1
(24)

Ĝa(s) = Gpa(s) = e−θs (25)
The open loop transfer function (Fig.1(b)) is given as

L(s) =C(s)Gp(s) (26)
Substituting f (s) from (4) in (6), we have

C(s) =
1

λ sβ +1− Ĝa(s)

(
Ĝm(s)

)−1
(27)

Substituting Gp(s) from (23) and C(s) from (27) in (26), the
open loop transfer function becomes

L(s) =
Gpa(s)

λ sβ +1− Ĝa(s)
(28)

Using first order Taylor series approximation of the delay term
present in denominator (Kaya , 2004), Ĝa(s) = −θs+ 1 and
substituting Gpa(s) = e−θs from (25) in (26), we get

L(s) =
e−θs

λ sβ +θs
(29)

Substituting s = jω in (29), we get

L( jω) =
e− jθω(

λωβ cos βπ

2

)
+ j
(

λωβ sin βπ

2 +θω

) (30)

From (7) and (30) we have

−θωg− tan−1

(
λω

β
g sin βπ

2 +θωg

λω
β
g cos βπ

2

)
=−π +φm

Solving for λ , we have

λ =
−θωg

ω
β
g

(
sin βπ

2 −Acos βπ

2

) (31)

where A = tan(π−φm−θωg). Now, from (8) and (30)
1√(

λω
β
g cos βπ

2

)2
+
(

λω
β
g sin βπ

2 +θωg

)2
= 1

Simplifying above equation in terms of λ will result in a
quadratic equation as

Pλ
2 +Qλ +R = 0 (32)

where P = ω
2β
g ,Q = 2θω

β+1
g sin βπ

2 and R = (θωg)
2− 1. The

roots of (32) will give λ in terms of β as

λ =
−Q±

√
Q2−4PR

2P
(33)

Using graphical technique, λ and β can be obtained from (31)
and (33) in the similar manner as obtained in System− I.

Discussion-II: The controller for System-II (in (27)) can be
assumed as a combination of PI controller and a FO filter.
Proof: We have C(S) from (27) as

C(s) =
1

λ sβ +1− Ĝa(s)

(
Ĝm(s)

)−1
(34)

Substituting e−θs =−θs+1 and Ĝm(s) from (24) we get

C (s) =
τs+1

k
(
λ sβ +θs

) (35)

Simplify (35) in terms of PI and a FO filter we get

C (s) = Kp2

(
1+

1
Ki2s

)
1(

T2sβ−1 +1
) (36)

where, Kp2 =
τ

θk , Ki2 = τ and T2 =
λ

θ
.
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3.3 Guidelines for selection of φm and ωg

The concepts of sensitivity and complementary sensitivity
forms the basics of robustness and stability of systems. Comple-
mentary sensitivity transfer function reflects tracking action and
sensitivity transfer function reflects disturbance rejection capa-
bility and robustness of the system. From Fig.1(b), the response
of the system is given by, Y (s) = T (s)R(s) + S(s)Gd(s)D(s),
where S(s) is sensitivity transfer function and T (s) is comple-
mentary sensitivity transfer function given as:

S(s) =
1

1+Gp( jω)C( jω)
(37)

and

T (s) =
Gp( jω)C( jω)

1+Gp( jω)C( jω)
(38)

Maximum sensitivity is a measure of robustness given as

Ms =
max
ω

S(s). Generally Ms ∈ (1,2) (Astrom and Hagglund

, 2006) gives good combination of disturbance rejection, set-
point tracking and robustness of the system. Higher Ms results
in faster performance but poor robustness, whereas small Ms
gives sluggish response and highly robust system. The relation
between Ms and phase margin (PM) and gain margin (GM) is
(Skogestad & Ian , 2001)

PM ≥ 2sin−1
(

1
2Ms

)
and

GM ≥ Ms

Ms−1
For Ms ∈ (1,2) we get PM ∈ (60,28.955)deg and GM ∈ (∞,2).
To have good satisfactory set-point tracking and robustness,
PM ∈ (30,60) can be chosen (Skogestad & Ian , 2001).

Gain cross-over frequency (ωg) determines the speed of re-
sponse. But higher ωg demands higher control input. Higher ωg
results in high bandwidth unless the cut-off rate of the closed
loop system is very low, which happens when β is very small,
say 0.1, but this cannot happen as small β would not provide
enough phase to the system to satisfy desired φm. So higher
ωg results in larger bandwidth which results in higher control
input. This may cause the control to exceed the maximum limit
of the actuator. However, if T1 is the time for which the control
signal is high, and Tc is the time constant of the system then
it is observed that for T1 << Tc, the higher control input can
be limited by using a saturation block without affecting system
dynamics (the effect of saturation is almost negligible). Also for
higher ωg, there might not be any λ > 0 and β ∈ (0,2) which
satisfy desired φm ∈ (30,60).

Based on the above ideas, the desired phase margin and gain
cross-over frequency are selected.

4. SIMULATION STUDIES

4.1 System-I

A boost converter transfer function model is taken form Kobaku
et al. (2017) where a two-degree-of-freedom (TDF) IO-IMC is
designed. The system transfer function is given as

Gp(s) =

1.65318×108(1.5544×10−4s+1)
(−7.8087×10−5s+1)

s2 +141.2289s+7.4934×104

Table 1. Performance measures for System-I.

Tr (sec) Ts (sec) %Mp ISE IAE ITAE
Proposed 0.0019 0.0096 15.6354 0.001415 0.00563 0.01648
Kobaku et al 0.0185 0.0322 0.0000 0.008404 0.01648 0.00097

Source voltage and load current variations are two major source
of disturbances in DC-DC boost converter. Since change in
source voltage dominantly affects the output voltage than the
output current, only disturbance due to source voltage is con-
sidered in this context to make the paper concise and at the
same time justifying the significance of the proposed control
strategy. The disturbance transfer function of output voltage to
source voltage is given as, (Kobaku et al. , 2017),

Gd(s) =
1.486(1.544×10−4s+1)

1.3345×10−5s2 +1.8847×10−3s+1
With two unknowns in FO controller (λ and β ), the controller
is tuned for φm = 60deg and ωg = 650rad/sec. Following con-
troller design steps given in Section-3.1, the value of unknown
parameters obtained are β = 1.3164 and λ = 1.8965 ∗ 10−4

(Fig.2(a)). Therefore, the equivalent classical controller transfer
function is given as

C(s) =
s2 +141.2289s+7.4934×104

(257s+1.653×106)
(1.8965×10−4s1.3164 +7.8287×10−5s)

For the simulation, 8th order Oustaloup approximation in the
range of ω ∈ (10,10000) (Monje et al , 2010) is used to imple-
ment the FO controller. The Bode plot of system-I is shown in
Fig.2(a). The phase margin and gain cross-over frequency of the
controlled system is very near to the desired and the mismatch
can be attributed to the approximation used for realizing the
FO term in the controller (i.e. sβ ). The controller is tuned for
higher ωg = 650rad/sec to have faster response than in Kobaku
et al. (2017) which uses ωg = 600rad/sec. Therefore speed
of response with the proposed controller is faster. Note that
Ms = 1.4 for the proposed controller whereas in Kobaku et al.
(2017) Ms = 1.235. Both are within a tolerable bound.

As no disturbance rejection controller is used in the proposed
scheme, the disturbance rejection is poor with oscillations ap-
pearing in the response. With disturbance rejection controller
in Kobaku et al. (2017), the controller avoids overshoot while
rejecting disturbance from the control loop, But the undershoot
for disturbance is more. For comparison, transient response rise
time (Tr), settling time (Ts) and overshoot (%Mp) are compared
in Table-1, and also ISE, IAE and ITAE performance measures
are compared. It is observed that the proposed IMC based FO
controller performs better than two degree of freedom IO-IMC
in terms of Tr, Ts, ISE and IAE. The performance indices are
found with disturbance (= −0.7 at 0.15sec) and total time of
simulation is 0.3sec. Simulations are also performed to com-
pare the ODF-FO IMC with ODF-IO IMC and it was seen that
the ODF-FO IMC controller performed better for all perfor-
mance measures. These plots are not shown to make the paper
concise.

4.2 System-II

A FOPTD system model is considered from Kaya (2004). The
plant transfer function is given as

Gp(s) =
e−1.34s

1.44s+1
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Fig. 2. System-I: (a) β vs. λ plot using (17), (λ1) and (19),
(λ2+ and λ2−) (b) Bode diagram of the system with
proposed controller and (c) Step response of the system
with different controllers.

In Kaya (2004), the controller design provides phase margin
of 60.9deg and gain cross-over frequency of 0.379. In this
work, the controller is designed for φm = 60deg and ωg =
0.41rad/sec. Following Section − 3.2, we get λ = 1.0648
and β = 0.9636 (Fig.3(a)). Therefore, the controller transfer
function becomes

C(s) =
1.44s+1

1.0648s0.9636 +1.34s
Eighth order Oustaloup approximation in ω ∈ (0.001,1000) is
used to implement fractional order term in the controller. Bode
plot and step response is given in Fig.3. Performance measures
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Fig. 3. System-II: (a) β vs. λ plot, using (31), (λ1) and (33),
(λ2+ and λ2−) (b) Bode diagram of the system with
proposed controller and (c) Step response of the system
with different controllers.

are tabulated in Table-2. The proposed method outperforms
Kaya (2004) in terms of Tr, Ts, ISE, IAE and ITAE. The
maximum sensitivity for proposed control loop is 1.6943 which
is comparable to Kaya (2004), where it is 1.6051. Since
no disturbance rejection controller is used, the disturbance
rejection profile is similar in both the cases and only the set-
point controller (C(s)) handles the disturbance.
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Table 2. Performance measures for System-II.

Tr (sec) Ts (sec) %Mp ISE IAE ITAE
Proposed 2.2082 7.3604 5.888 2.158 2.936 10.64
I Kaya 2.4850 8.1577 4.628 2.807 4.343 51.24

5. CONCLUSIONS

This paper proposes a IMC based FO controller to design
for independently specified phase margin and gain-crossover
frequency. A FO filter is used in place of IO filter, thereby
introducing an extra parameter which is used to tune the desired
specifications.

A graphical technique is proposed to obtain the parameter
values for the given specification on phase margin and gain
cross-over frequency. Furthermore, the operational ranges for
these specifications are also given from maximum sensitivity
viewpoint.

The proposed technique is verified for two different kind of
systems, taken from well cited references (Kobaku et al. (2017)
and Kaya (2004)). First system is a DC-DC boost converter
which is NMP system with one zero in RHP and second
is a FOPTD process model. The superiority of adding extra
degree-of-freedom in controller is verified through simulations
for set-point changes and disturbance rejection. The proposed
controller gives better results in almost all performance indices.

In ODF-IO IMC, only one tuning parameter cannot satisfy more
than one specification at a time. Even if they do then the desired
specifications are related with a relation, as in Kaya (2004). On
the other hand, with the proposed methodology for designing
ODF-FO IMC, the response can be improved by independently
selecting desired φm and ωg. This can be seen both in system-I
and system-II.
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