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Abstract: Structural vibration is a highly studied topic, especially in civil structures. Unwanted
earth vibrations during seismic activity endanger life and often destroy buildings. In this paper,
a Fractional Order Proportional Derivative controller is designed with the purpose of vibration
mitigation in a three-story building. The experimental setup consists of a third floor building
equipped with an active pendulum attached to the last floor. The controller is designed for the
fractional order mathematical approximation of the structure by imposing frequency domain
constraints such as gain crossover frequency, phase margin and robustness to gain variations.
The validity of the controller is analyzed considering the simulated behavior of the compensated
building to the El Centro earthquake and experimental disturbance rejection performance.
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1. INTRODUCTION

Buildings, bridges and civil structures are constantly
threatened by ground motion during seismic activity. Sev-
eral solutions have already been found involving passive
tuned mass dampers such as the one from Poon et al.
(2004) in order to improve safety and reduce loss. However,
the high uncertainty in ground motion during earthquakes
justifies the need for a more robust and reliable approach,
achieved by active damping techniques.

Several damping strategies have been tested and vali-
dated such as the Internal Model Control validated on a
mass-spring-damper benchmark presented in Keyser et al.
(2017b). The IMC performs similar to the model based
predictive approach tuned for an efficient disturbance
model of the system presented by Copot et al. (2017).

Another viable option for active damping is fractional
calculus. A highly studied branch of mathematics, frac-
tional calculus, explores the possibility of differentiation
and integration to an arbitrary order which is not lim-
ited to the integer numbers domain. In the last years,
fractional calculus has been successfully used in the field
of control engineering developing controllers with more
degrees of freedom, offering increased stability and better
performance as stated by Chen et al. (2009) and Monje
et al. (2010).

Passive and active seismic mitigation of structures equipped
with both Tuned Mass Damper (TMD) and Viscoelastic
Damper (VED) is presented in Muresan et al. (2016). Ac-
tive tuned mass dampers controlled with a fractional order
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PD controller successfully reduce oscillations in Prodan
et al. (2016), Lin et al. (2015), Mackriell et al. (1997)
proving that active tuned mass dampers drastically reduce
the amplitude of the vibration when compared to passive
TMDs. Robust tuning strategies involving the H., con-
troller have been studied in Wu et al. (2006). The robust
controller has been validated on a steel building tested on
a shake table. From the results obtained, the performance
of the controller is remarkable and robust.

This paper presents the application of fractional order
calculus in the field of active vibration suppression. A
case study of an experimental three story building is se-
lected to test active fractional-order vibration attenuation.
The experimental setup is characterized as a fractional-
order model for which a fractional order PD controller is
tuned. The tuning strategy is based on imposing frequency
domain specifications regarding gain crossover frequency,
phase margin and robustness to gain variations. The ob-
tained controller is validated through simulation and real
life experimental tests.

The novelty of the presented work is the fractional order
PD controller applied in the field of active vibration
suppression of an experimental structure characterized by
fractional-order structural dynamics.

The paper is structured as follows: Section 2 presents the
frequency domain tuning method, Section 3 details the
case study consisting of the building, Section 4 shows the
obtained results, while Section 5 concludes the paper.
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2. FRACTIONAL ORDER CONTROLLER TUNING
STRATEGY

The transfer function of a fractional order Proportional
Derivative controller is given by

HFO_pD(S) = kp(l + kds“) (1)

where k, and kg are the proportional and derivative gains,
while A € (0,2) is the derivative order. When p = 1, the
transfer function from equation (1) describes an integer
order PD controller.

Mapping the Laplace to the frequency domain and apply-
ing deMoivre’s formula gives the trigonometric form of the
fractional order PD controller

Th

Hro-pp(jw) = kyl1 + kaw'(cos - +jsin T (2)

2

The fractional PD controller is applied to a process char-
acterized by fractional order dynamics described by

k

P =
(5) as? +bs* + ¢

(3)
where « can be any real number. For @ = 1, the transfer
function is the classical second order model involving the
damping ratio and the natural frequency of the process.

The controller has three parameters that need to be
determined: the proportional gain, the derivative gain
and the fractional order of differentiation. The tuning
procedure lies in solving a system of three frequency
domain equations involving the three parameters needed
for the controller and the transfer function of the process.

In the frequency domain, the magnitude of the open loop
system is equal to 1 (0 dB) when the frequency w is the
gain crossover frequency denoted by wge.

|P(jwge) Hro-pp(jwge)| =1 (4)

The phase equation of the open loop system is expressed
in

LP(jwge) + LHpo-pp(jwge) = =T + G- (5)

Since the control algorithm is intended for seismic mit-
igation where the ground motion is uncertain, an addi-
tional robustness condition involving the evolution of the
phase near the gain crossover frequency is added to the
constraints.

The robustness is imposed through a constant phase
around the gain crossover frequency. A constant phase is a
straight line on the Bode phase diagram which guarantees
that at small gain variations the open loop phase remains
the same. The constant phase is translated into frequency
domain constraint by imposing the derivative of the phase
around the frequency of interest as being 0.

d(ZP(jw)) dZHFo_pD(jw)
+
dw dw

= O|w:wgu- (6>
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Replacing the trigonometric form of the fractional order
PD controller from equation (2) in the frequency domain
constraints from equations (4), (5) and (6) gives the system
of equations that needs to be solved in order to determine
the parameters of the controller.

‘kp [1 + kawly (cosM + jsin @ﬂ‘ = P(;

2 2 JWge) @

/ [1 + kqwt, (cos 71'27/1 + jsin %)} = — T+ ¢m — LP(jwge)
(8)

d/[1+ kawk, (cos T2 + jsin T2)] 7 7dZP(jw)|
dw N dw YTV
(9)
By solving the system of equations formed by (7), (8) and
(9), the three parameters ky, kq and p of the fractional
PD controller are determined. Firstly, the derivative gain,
kq, and the fractional order of the differentiation, y, can be
obtained by solving the system composed by the equations
of the phase and the derivative of the phase. Birs et al.
(2016) presents several options for solving the system
of equations. The proportional gain, k,, is obtained by
replacing k4 and p in the magnitude equation:

1 1
(Jwge)| \/1 + 2kqwh cos T+ kflwg’é

hy = (10)

|P

3. CASE STUDY
3.1 Description

The case study consists of a three story steel structure
resembling a civil building. The experimental unit has
been built at the Technical University of Cluj-Napoca and
can be seen in Figure 1.

The height of the experimental building is 90 cm, the
length is 45 cm and the width is 9 cm. The active vibra-
tion suppression algorithm is enacted using a pendulum
attached to the last floor of the building excited by a
servomotor. Passive vibration suppression has been previ-
ously realized using a pendulum in Oliveira et al. (2013).
The drawback is that the pendulum must be custom built
with the same natural frequency as the building, creating a
dependency between the pendulum’s length and the height
of the structure. In the case of active seismic mitigation,
the frequency of the pendulum can be programmed on the
servomotor acting upon it, eliminating the need of a long
and heavy metronome.

Each floor is furnished with an accelerometer that collects
real-time vibration information in LabVIEWTM using
dual-core ARM Cortex-A9 real-time NI myRIO board.
The acceleration data is filtered and integrated twice
in order to obtain the displacement of each floor. The
command signal is computed real-time and sent to the
servomotor using the same microcontroller used for data
acquisition.
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Fig. 1. Experimental three-story building equipped with a
pendulum for active vibration suppression

3.2 Ezperimental fractional-order system identification

The input signal of the process is considered the am-
plitude of the pendulum’s angle, while its frequency is
kept constant at the natural frequency of the structure.
Experimentally, the natural frequency of the building has
been obtained at 3.45 Hz.

A fractional order second order transfer function express-
ing the relationship between the angular displacements of
the pendulum versus the displacement of the third floor
has been identified experimentally. The data used for the
fractional order identification was obtained by exciting the
pendulum with sine wave inputs of fixed frequency equal to
the resonant frequency, 3.45 Hz, and different amplitudes.
The identification was performed taking into consideration
solely the movement of the last floor on which the pendu-
lum is attached, while the data from the other floors has
been ignored. By taking into consideration data from the
rearmost floor, the obtained model characterizes the first
flexural mode of the structure.

1.1

P =
(%) = 5097852 1 0.20064505 1 441.46

(11)
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Fig. 3. Experimental fractional order model validation -
zoomed

The fit of the obtained model is 84% based on data ob-
tained by performing experiments around the first reso-
nant frequency of the building. Figures 2 and 3 show the
validation of the model.

The justification of using a fractional order approximation
in favor of an integer transfer function is presented in
Meral et al. (2010) and Zhou et al. (2015). Since ground
motion is highly uncertain, the fractional order approxima-
tion of the model behaves better around the other resonant
frequencies due to the viscoelastic character of the steel
structure phenomenon more appropriately characterized
by fractional calculus.

4. FRACTIONAL ORDER PD CONTROLLER
TUNING

The controller is tuned with the purpose of completely
eliminating the third floor oscillations. A simplified block
diagram is shown in Figure 4. The seismic excitation #, is
considered a disturbance and a properly tuned controller
should keep the displacement of the structure at reference
position 0. Reference 0 characterizes the natural state of
the building without any displacement.

The control signal u(t) represents the angle between the
free end of the pendulum and an imaginary perpendicular
axis to the ground. The control signal is sent to the
pendulum through the controlled servomotor.

In order to determine the parameters of the fractional
order PD controller using the tuning strategy previously
detailed, the desired gain crossover frequency of the open
loop system is imposed at w., = 25 rad/s, while the phase
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Fig. 4. Block diagram of the closed loop process
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Fig. 5. Bode diagram of the open loop compared to the
uncompensated system

margin ¢,, = 60 deg. The constraints for the gain crossover
frequency and phase margin have been chosen based on
the existence conditions of fractional order controllers
described by Muresan et al. (2018).

The controller that honors the constraints expressed in
equations (7), (8) and (9) regarding magnitude, phase
margin and robustness has been obtained as:

Hro_pp = 0.2529(1 4 76.76415%-6539), (12)

The fractional order of differentiation is obtained as being
1 = 0.6639.

The Bode diagram of the open loop system compared to
the frequency response of the fractional order approxima-
tion shows that the imposed constraints are honored in
Figure 5. The imposed robustness constraint is character-
ized by the straight line of the phase plot present between
w = 10% rad/s and w = 10* rad/s.

In order to implement the fractional order controller in
real-life applications, it has to be approximated as a di-
vision of integer order polynomials. A discrete approxi-
mation method with sampling time 75 = 0.025 s based
on Keyser et al. (2017a) has been used to obtained a
fifth order approximation of the controller from (12). The
obtained discrete form is implemented on the experimental
setup with the purpose of actively suppress the structure’s
displacement.

5. RESULTS
The efficacy of the tuned controller is validated by simulat-

ing the closed loop response of the process when exposed
to real seismic data recorded during the El Centro earth-
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Linear Simulation Results
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Fig. 8. Experimental result regarding the impulse distur-
bance response of the uncompensated structure

quake analyzed in Rockwell and Klinger (2013) and Ulrich
(1941). Real life validation of the controller is also achieved
by exposing the structure to impulse type disturbances and
the closed loop response in terms of disturbance rejection
settling time based on the 2% criteria.

The simulated response of the structure at the El Centro
disturbance is presented in Figure 6, while a zoomed
perspective is presented in Figure 7. As can be seen, the
attenuation of the oscillation amplitude is highly effective.
In case of a real El Centro earthquake acting on the
experimental building, the displacement of the third floor
of the structure is reduced to less than 10~2 cm.
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Fig. 11. Experimental saturated control signal applied to
the structure’s pendulum

Real time experiments consider impulse type disturbances
of various amplitudes applied to the third floor of the
structure. Figure 8 shows the response of the uncompen-
sated structure to impulse type disturbances. The settling
time of the open loop structure is 8 seconds.

The closed loop response to impulse disturbances of am-
plitudes varying between 0.6 cm and 1.2 cm is presented
in Figure 9. It can be easily observed that the amplitude
of the unwanted vibration is quickly reduced.

The command signal computed with the fifth order ap-
proximation of the fractional order PD controller is shown
in Figure 10. It can be seen that for higher values of the
disturbance amplitude, the command signal goes up to
80 degrees. In the real life implementation, the command
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signal applied to the servomotor is restricted between -45
and 45 degrees. Figure 11 presents the saturated command
values.

The large amplitude of the command signal is justified
by the fact that the amplitude of the disturbances varies
between 0.6 and 1.2 cm. The displacement represents
0.54% to 1.08% movement when compared to the height of
the building. Taking the real life situation of the previously
mentioned Taipei tower, which has a 500 m height, a 0.54%
displacement represents 270 cm in real life, while 1.08%
represents 540 cm. Such great oscillation amplitudes are
unrealistic in real life situations. The controller proves
successful in attenuating the oscillation amplitude as well
as the disturbance settling time.

The advantages of using a fractional order control over
classical, integer order based control strategies are studied
in Birs et al. (2016), Monje et al. (2010), Copot et al.
(2013) and Chen et al. (2009). The advantages of the frac-
tional approach are numerous including increased tuning
flexibility, better transient and steady state responses, as
well as easy encapsulation of more design parameters in
the tuning process as described in Muresan et al. (2015).

6. CONCLUSION

Frequency domain constraints based on the gain crossover
frequency, phase margin and robustness to gain variations
can be used as a system of equations from which the
parameters of a fractional order proportional derivative
controller can be determined.

The parameters of the controller are obtained using a
fractional order approximation of an experimental build-
ing equipped with an active pendulum. The structure’s
dynamics are identified in the form of a fractional order
transfer function. The tuned controller is based on the frac-
tional order model. Validation of the controller is realized
both through simulation and real life experiments. The
simulation is based on data registered during the El Centro
earthquake, while the real life experiments involve impulse
disturbance rejection. Both simulation and experimental
responses of the closed loop system bring considerable
improvements to the structure’s behavior when exposed
to unwanted displacement.

In addition, the present work proves that active, fractional-
order controlled pendulums can be used to successfully
reduce vibration in civil buildings.

Further research objectives involve determining analytic
fractional-order models that encompass the effects of every
floor on the structural dynamics of the entire building. The
purpose is to accurately model the entirety of the flexural
harmonics exhibited by the experimental structure.
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