
PI Controller Based Load Frequency
Control Approach for Single-Area Power
System Having Communication Delay

Sahaj Saxena ∗ Yogesh V. Hote ∗∗

∗ Electrical and Instrumentation Engineering Department, Thapar
Institute of Engineering and Technology, Patiala, India (e-mail:

sahajsaxena11@gmail.com).
∗∗Department of Electrical Engineering, Indian Institute of Technology

Roorkee, Roorkee, India (e-mail: yhotefee@iitr.ac.in)

Abstract: The modern power systems are becoming complicated day by day because of the
delays introduced by the communication networks. Due to this reason, the traditional load
frequency control (LFC) design scheme depicts a destabilizing impact and an unacceptable
performance. Therefore, this paper proposes an analytico-graphical approach for designing PI
controller for a single-area LFC system having communication delay. The concept is based on
extracting stability region in parameter space (kp, ki) with predefined gain and phase margins.
Further, the values of optimal kp and ki are selected using integral error criterion. The proposed
scheme gives faster disturbance rejection response as compared to the recently developed LFC
scheme. The controller also works well when the system parameters are perturbed from their
nominal values.
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margins, time delays.

1. INTRODUCTION

Traditionally, LFC is an ancillary service to regulate net
scheduled power exchange and frequency fluctuations to
meet load demand. See Ibraheem et al. (2005); Saxena
and Hote (2013); Hanwate et al. (2018). However for
effective implementation of LFC scheme, the present day
power generation sector witnesses increased competition in
deregulated market and huge demand of ancillary regula-
tion services in more open, adaptable and distributed com-
munication network. In such communication network, time
delay arises during transmission of telemetry signals from
phasor measurement units, power line carriers, remote
terminal units to local control center, local controller to the
generating unit, etc. These communication (time) delays
may have destabilizing impact on the system dynamics and
therefore degrades the system’s performance. Thus, it is a
serious problem and most of the research works on LFC
have neglected such type of delay while formulating control
laws. To address LFC scheme in presence of communica-
tion delays, few mathematically complex control strategies
(such as Bevrani (2009); Yu and Tomsovic (2004); Jiang
et al. (2012); Wang et al. (2015)) have been developed
using linear matrix inversion and state feedback control.

In classical control theory, gain and phase margin (GPM)
defines the robustness of the system in the sense that
gain variation and phase delay do not lead to instability.
Moreover, GPM also highlights the performance of closed-
loop system in terms of relative stability and transient per-
formance of the system response. Furthermore, minimizing
the given integral error performance index (such as IE,

ISE, IAE ) makes the control system optimal. Therefore,
keeping the aforementioned facts in mind, we propose a
proportional integral (PI) controller based LFC scheme for
single-area power system containing non-reheated turbine
and communication delay in which for selection of PI
parameters, the stability boundary locus (SBL) approach
is utilized. The stability region in controller parameter
space is determined with constraints on GPM and the
controller parameters are selected on the basis of inte-
gral of error index (i.e., IE =

∫
ε(t)dt where ε(t) is the

difference between input and output of control system).
The proposed scheme regulates the frequency excursion in
presence of sudden load efficiently. Moreover to the best of
our knowledge, such control scheme has not been studied
for LFC problem with communication delay so far.

The rest of the paper is organized as follows. Section
2 presents the encouragement to perform this study. In
section 3, the proposed control strategy is described.
Simulations are carried out to test the efficiency and
efficacy of the control strategy in section 4. Finally section
5 concludes the present study.

2. MOTIVATION

The power system and control research find PI controller,
the most acceptable controller for LFC analysis but in
presence of communication delay, literature lacks some
analytical, robust and optimal PI based LFC design. Also
recently, a new PI controller tuning scheme via SBL to
counter communications delay in LFC is proposed by
Sönmez and Ayasun (2016), in which the stability regions
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are investigated in controller parameter space (kp − ki)
plane. It is observed that in this technique there is a need
to identify stable and unstable regions, (See R1, R2, ..., R5
in Fig. 2 of Sönmez and Ayasun (2016)). Further, it is
shown that selecting any point in the stable region, the
stabilizing parameter values of PI can be identified, but
no selection criterion is described to pick the most ap-
propriate stabilizing values of kp and ki parameters. Also,
these stabilizing values do not ensure desired robustness
and optimal performances. Therefore, the aforementioned
points motivates us to develop an analytico-graphical con-
trol scheme that fulfills the research gaps in this direction.

3. PROPOSED CONTROL STRATEGY

3.1 Time-delayed LFC dynamics

We know that designing any controller on a single-machine
power system (single-area) is logically the best place to
begin an evaluation of the controller. Therefore, we present
the standard simplified single-area LFC model in Fig. 1 in
which the communication delay is expressed by an expo-
nential function e−θs, where θ gives the communication
delay time; see Jiang et al. (2012). Here, all the com-
munication delays are accumulated into single constant
delay before controller as it is assumed that all the delays
are identical and the control center waits to receive the
telemetered values. Due to no net tie-line power exchange
in the single-area LFC scheme, the area control error
(ACE) is defined as

ACE(t) = β∆f(t)

where β is frequency bias constant. The PI controller C(s)
takes the form:

u(t) = −kpACE(t)− ki
∫
ACE(t)dt

where kp and ki are proportional and integral gains,
respectively. The approximated mathematical models in
Fig. 1 are

PG(s) =
1

sTg + 1

PT (s) =
1

sTch + 1
and

PP (s) =
1

Ms+D
where Tg, Tch,M,D denote the governor time constant,
turbine time constant, generator inertia constant, and
damping coefficient, respectively. The complete model of
power system (depicted by dotted block in Fig. 1) can now
be written as:

P (s) =
PG(s)PT (s)PP (s)

1 + (PG(s)PT (s)PP (s)/R)

where R is droop characteristics.

3.2 GPM based computation of PI parameters

Motivated by the elegant scheme of exploring stabilizing
PI parameters in Tan et al. (2006), we produce a modified
scheme which efficiently find the stability region based on
desired GPM specification. We present our work with few
definitions.

Fig. 1. Block diagram of single-area power system

Definition 1. For plant P (s) with controller C(s), the gain
margin A and the phase margin φ are defined, respectively,
as:

A = 1/|C(jωp)P (jωp)|
and

φ = arg [C(jωg)P (jωg)|+ π

where ωp and ωg are given, respectively, by

arg [C(jωg)P (jωg)] = −π
and

|C(jωp)P (jωp)| = 1

.

Definition 2. A GPM tester Q(s) = Ae−jφ is a virtual
compensator (practically non exist) provides information
on plotting the boundary lines of constant A and φ in
(kp − ki) parameter plane.

Definition 3. The stability domain L with its boundary L
in the parameter space S with kp, ki being coordinates is
a simple connected region such that for (kp, ki)∈ L, all the
roots of characteristic equation ∆(s) lie in open left-half of
the s-plane. This L segregates S into stable and unstable
region.

In order to obtain the stabilizing PI parameters (kp, ki),
the GPM tester is augmented before C(s) as depicted in
Fig. 2. Next to obtain the L of L in S, we first obtain ∆(s)
of closed-loop time-delayed LFC system in Fig. 2 as

∆(s) = M(s) +N(s)eψ (1)

where M(s) = m4s
4 +m3s

3 +m2s
2 +m1s, N(s) = n1s+

n0, and ψ = −θs − jφ. The coefficients of polynomials
M(s) and N(s) are, m4 = RTgTchM, m3 = MRTch +
RDTgTch + RTgM, m2 = MR + RDTch + RTgD, m1 =
RD + 1, n1 = AβRkp, n0 = AβRki. Now, to find L with
L in S for specified GPM, we follow corollary 1.

Corollary 1. The PI parameters (kp, ki) for a given value
of gain margin can be obtained by substituting φ = 0 in
∆(s). Likewise, the controller parameters for given phase
margin can be achieved by setting A = 1 in ∆(s).

Proof. See Appendix A

Therefore, for a fixed phase margin φ, we set A = 1 and
by substituting s = jω and expanding exponential term
as ej(•) = cos(•) + jsin(•) in (1), we get the characteristic
equation as

∆φ(jω) =(m4ω
4 −m2ω

2 + nφ0 cosα− n1ωsinα)+

j(−m3ω
3 +m1ω + nφ1ωcosα+ nφ0sinα)

(2)

where α = −θω−φ, nφ0 = βkiR and nφ1 = βkpR. Similarly
for fixed gain margin A, set φ = 0 in (1), which gives

∆A(jω) = (m4ω
4 −m2ω

2 + n0cosωθ + n1ωsinωθ)

+j(−m3ω
3 +m1ω + n1ωcosωθ − n0sinωθ)

(3)
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Fig. 2. Block diagram of LFC system with GPM tester

Equating the real and imaginary parts of (2) to zero, we
get

−kpX1(ω) + kiY1(ω) = Z1(ω)
kpX2(ω) + kiY2(ω) = Z2(ω)

(4)

where X1(ω) = βRωsin(α), Y1(ω) = βRcos(α), Z1(ω) =
−m4ω

4+m2ω
2, X2(ω) = βRωcos(α), Y2(ω) = βRsin(α),

Z2(ω) = m3ω
3 −m1ω. Similarly for (3), we obtain

kpX3(ω) + kiY3(ω) = Z1(ω)
kpX4(ω)− kiY4(ω) = Z2(ω)

(5)

where X3(ω) = AβRωsin(ωθ), Y3(ω) = AβRcos(ωθ),
X4(ω) = AβRωcos(ωθ), Y4(ω) = AβRsin(ωθ). Now, on
solving the two equations of (4), the stability locus for fixed
phase margin Lφ(kp, ki, ω) in (kp − ki) plane is obtained
as

kp =
Y1(ω)Z2(ω)− Y2(ω)Z1(ω)

X1(ω)Y2(ω) +X2(ω)Y1(ω)
(6)

ki =
X2(ω)Z1(ω) +X1(ω)Z2(ω)

X1(ω)Y2(ω) +X2(ω)Y1(ω)
(7)

Likewise for (5), the stability locus for fixed gain margin
LA(kp, ki, ω) in (kp − ki) plane is obtained as

kp =
Y4(ω)Z1(ω) + Y3(ω)Z2(ω)

X3(ω)Y4(ω) +X4(ω)Y3(ω)
(8)

ki =
X4(ω)Z1(ω)−X3(ω)Z2(ω)

X3(ω)Y4(ω) +X4(ω)Y3(ω)
(9)

The pair of equations (6), (7) and (8), (9) produce desired
GPM based L as ω runs from 0 to ∞.

Definition 4. Griding frequency ωh denotes the frequency
at which the imaginary part of ∆(s) = 0 where s = jω.
Basically, ωh limits the value of ω upto which L is swiped
out to form L.

We also recall the corollary 2 to identify the region in the
parameter space that would yield the parameter set kp and
ki for stabilization of the control system.

Corollary 2. Tan et al. (2006). The line ki = 0 and L
together forms the region L in S. L is a stable region if
the arbitrary test point in that region yields the value of
stabilizing kp and ki.

Proof. See Appendix B

Once the ωh is obtained, there is no need to proceed
further to draw locus in S. The required ωh for Lφ and
LA can be obtained by substituting ki = 0 in (7) and
(9), respectively. After the stabilizing PI controller region
is computed, our next goal is to select kp and ki values
from the region L to achieve optimum performance. We
know that for good disturbance rejection, the IE index for
step disturbance or steady state error should be as low as
possible. The following theorem helps to provide optimum
PI parameters.

Theorem 1. For the disturbance rejection performance in
PI design, IE = σ

ki
for step disturbance input Σ(s) = σ

s ,

σ ∈ R+.

Proof. Let ε(s) be error corresponding to step input
disturbance Σ(s) = σ

s of the plant G(s) arranged in unity

feedback configuration with controller C(s) = kp + ki
s .

Therefore, we can say

ε(s) =
G(s)

1 + C(s)G(s)
Σ(s)

and

IE = lim
t→∞

t∫
0

ε(η)dη = lim
s→0

G(s)Σ(s)

(1 + C(s)G(s))
=
σ

ki
.

Theorem 1 states that the maximization of ki is equivalent
to the minimization of IE. Therefore, the point corre-
sponding to the highest value of ki within the stability
region should be selected to show the optimality of the
control scheme.

4. SIMULATION RESULTS

To illustrate the effectiveness of the proposed control
strategy, we consider the LFC model whose parameters
are given in Sönmez and Ayasun (2016) and θ = 2.28s.
Our main purpose is to determine the stabilizing values
of kp and ki such that ∆(s) in (1) should be Hurwitz
stable with desired gain and phase margins. Generally,
the recommended ranges of gain and phase margins are,
respectively, 2−5 and 300−600. Suppose, our desired gain
and phase margins are A ≥ 3 and φ ≥ 300, respectively,
then we substitute φ = 300 in (2), we get stability locus
Lφ=300 for specific phase margin with griding frequency

ωφh = 1.288 in Fig. 3. Similarly, by substituting A = 3
in (3), we obtain LA=3 for specific gain margin with
griding frequency ωAh = 1.47. The common region covered
by ki = 0, LA=3 and Lφ=300 gives stability region of
desired gain and phase margins. Now, on comparing the
stability region (LSA) obtained using Sönmez and Ayasun
(2016), the span of the shaded region in Fig. 3 is very less
which reduces the computational search effort with desired
stability margin. Now, we select a point near the boundary
of LA=3 from shaded region in Fig. 3 (denoted by ‘+’
mark in zoomed portion of Fig. 3), i.e., kp = 0.29, ki =
0.109. Using these values, the time response simulation of
frequency deviation ∆f for load increment ∆Pd(s) = 0.1
p.u. at t = 1 s is shown in Fig. 4. The disturbance rejection
performance is faster and non-oscillatory in comparison to
the PI controller having parameters kp = 0.55, ki = 0.55
suggested in Sönmez and Ayasun (2016). Moreover, to
measure the optimality of the proposed controller, the IE
for proposed method is −9.17 whereas for Sönmez and
Ayasun (2016), it is −1.82, which confirms the optimality
of the proposed scheme.

In controller design and analysis, it is necessary that the
controller not only maintain the system stability but also
possess a strong robust performance. Therefore to judge
the robust performance of the controller, the plant pa-
rameters and communication delay are varied from their
nominal values. When each parameter of system is 20%
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Fig. 3. Stability boundary region for PI controller
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Fig. 4. Time response simulation for frequency deviation

increased then the proposed scheme in Fig. 5(a) stabi-
lizes the frequency fluctuation whereas the response using
Sönmez and Ayasun (2016) scheme is unstable. Similarly
if the parameters are 20% decreased, the response in Fig.
5(b) is oscillatory before fluctuations die out by Sönmez
and Ayasun (2016) scheme whereas the proposed scheme
produce smooth response. Lastly, when communication
delay is varied from θ = 2.28 s to θ = 4 s, the proposed
scheme in Fig. 5(c) is capable to reject disturbance while
Sönmez and Ayasun (2016) scheme destabilizes the sys-
tem.

5. CONCLUSIONS

This paper proposes an analytico-graphical method of
obtaining PI parameters which are based on SBL approach
using specific gain and phase margins for single-area power
systems having communication delay. The obtained results
show that the designed controller can ensure good perfor-
mance despite load disturbance and indeterminate delays
in the communication network. Thus, the proposed scheme
could be a benchmark solution for LFC design of multi-
area as well as multi-machine power systems when delays
are introduced by communication networks.
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Appendix A. PROOF OF COROLLARY 1

Consider a plant

G(s) = N(s)/D(s) (A.1)

with PI controller C(s) = kp + ki/s and GPM tester
Q(s) = Ae−jφ. The closed-loop characteristic equation
becomes

∆(s) = 1 +Ae−jφ(kp + ki/s)N(s)/D(s) (A.2)

On substituting φ = 0 in (A.2), we get the characteristic
equation for fixed gain margin as

∆A(s) = 1 +A(kp + ki/s)N(s)/D(s) (A.3)

Equation (A.3) indicates that ∆A(s) is free form phase
margin term φ and only A is present. Similarly, on putting
A = 1 in (A.2), we get the characteristic equation for fixed
phase margin as

∆φ(s) = 1 + e−jφ(kp + ki/s)N(s)/D(s) (A.4)

which depicts that only φ enforces constraints during
evaluation of kp and ki parameters.

Appendix B. PROOF OF COROLLARY 2

We fragment N(s) and D(s) of (A.1) into their even and
odd parts as

N(s) = Ne(s
2) + sNo(s

2)

D(s) = De(s
2) + sDo(s

2)
(B.1)

Replace s = jω, in (B.1) and then substitute in (A.2), we
get

∆(jω) = <(∆(jω)) + =(∆(jω)) (B.2)

where

<(∆(jω)) =− ω2Do(−ω2)− ω2AkpNo(−ω2)

cosφ− ωAkpNe(−ω2)sinφ+Aki

Ne(−ω2)cosφ− ωAkiNo(−ω2)sinφ

(B.3)

and

=(∆(jω)) =ωDe(−ω2) + ωAkpNe(−ω2)cosφ−
ω2AkpNo(−ω2)sinφ+ ωAkiNo(−ω2)

cosφ+AkiNe(−ω2)sinφ

(B.4)

∆(jω) becomes unstable at s = jω when its roots cross
the imaginary axis, i.e., (B.3) and (B.4) become zero
simultaneously which implies ω = 0 and ki = 0. Thus, L
and ki = 0 together forms L that divides S into stable and
unstable regions. Finally, when we select any point (kp, ki)
within region, then the stable region L which includes the
values of stabilizing kp and ki can be obtained.
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