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Abstract: This paper presents a new model-free tuning approach for the PID controller tuning
with the employment of the refined recursive instrumental variable (RIV) method. The proposed
approach can be applied to solve the control loop tuning problem without identification of the
plant or process model and it can be implemented in the online manner. Also, the colored
measurement noise has been taken into account. For PI and PID control, the implementation
details and the step by step procedures are provided respectively. Two simulation examples are
provided to validate the effectiveness of the proposed approach.
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1. INTRODUCTION

Since the middle of last century, the proportional-integral-
derivative (PID) controllers have become the most popular
controllers in different process industries and nowadays
PID controllers still dominate the industrial control area.
Over the decades, people have made great efforts on the
research of PID controllers; numerous books and papers
can be referenced on how to design a PID controller.
Moreover, many commercial software, such as, Emerson
DeltaV Insight, Honeywell Profit PID, Supcon PID-Suite,
etc., were published to assist engineers in PID controller
design. Despite the progress made in the previous work,
PID tuning is still often an non-trivial task in industry,
especially for the users without control background. One
important reason is that the traditional PID tuning ap-
proaches are either model based or rely on the testing
data with sufficient input excitation. However, in many
situations, people are not allowed or impossible to carry
out the required tests, which brings with the development
of model-free tuning approaches for the PID controller
design.

Regarding to the model-free tuning methods, some impor-
tant work can be referenced. For example, Hjalmarsson
et al. (1998) formulated the iterative PID tuning task as
a control parameter optimization problem and solved the
problem by using a Gauss-Newton scheme; Guardabassi
et al. (2000) proposed an off-line virtual reference feedback
tuning (VRFT) approach, the idea of which is to interpret
the open-loop I/O data as closed-loop data produced by
a virtual reference signal; based on this work, Campi
et al. (2002) refined the VRFT method by giving more
emphasis on the implementation details and performance
issues; Hayashi et al. (2011) proposed a so-called one-shoot
tuning scheme with simplified procedure, which enables
users to tune PID gains with only operating I/O data. Gao
et al. (2017) combined controller tuning with performance

assessment and convert the tuning problem to be a convex
optimization problem.

This paper focuses on solving the model-free tuning prob-
lem from the industrial perspectives. In practice, one fact
is that some industrial processes are intrinsically time-
varying and a few of them are fast-varying systems. Thus,
it is necessary to update the PID parameters as soon as the
process deviates significantly. Another fact is that there
exist practical needs to tune a large number of control
loops at the same time, which would consume great com-
putational resource if every single tuning process is time-
consuming and occupies large amount of computational
resource.

In this paper, we aims at solving these issues by proposing
a model-free tuning approach with recursive implementa-
tion procedures. Following the idea of the VRFT methods,
we first formulate the tuning problem as an optimization
problem; then we discuss and show the characteristics of
the colored measurement noise. To reduce the negative
effect of the noise, we employ the refined instrumental vari-
able (RIV) method to solve the parameter optimization
problem. For PI and PID control, different notations and
implementation steps are also provided.

The remaining of this paper is organized as follows: Sec-
tion 2 addresses the tuning objective and presents the idea
of the proposed model-free tuning approach; Section 3 de-
tails the recursive implementation of the tuning approach;
Section 4 shows some simulation results to demonstrate
the effectiveness of the algorithms. Section 5 concludes this
research work.

2. THE MODEL-FREE PID TUNING APPROACH

2.1 Tuning Objective

In this paper, we consider the control systems as described
in Fig. 2.1, see below, where Gcl and G∗cl are respectively
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Fig. 1. The control system diagram.

the actual and desired closed loop control systems. P is
short for plant, which is unknown and could be difficult or
impossible to be modeled accurately with limited number
of operating data. C here represents the standard PID
controller, which can be written in the following discrete-
time form,

C(z−1) = K + Ti
Tsz
−1

1− z−1
+ Td

1− z−1

Tsz−1
, (1)

where K, Ti, Td are the controller parameters.The tuning
objective is to design the three parameters so that Gcl

approaches G∗cl as close as possible. Note that, we here
focus on the development of a tuning approach without
a priori knowledge of P or estimating a plant model
beforehand. Due to the lack of the information of Gcl,
we aim at minimizing ‖yk − y∗k‖` instead of minimizing
‖Gcl−G∗cl‖`. The notation ‖ · ‖` stands for `-norm and we
let ` = 2 in our work.

2.2 Tuning Approach

Bearing the tuning objective in mind, we next show the
main idea of designing the PID controller in (1), that is,
selecting appropriate parameters K, Ti and Td, in the least
squares sense. We start by writing the reference signal rk
in the following form,

rk =
(
K + Ti

Tsz
−1

1− z−1
+ Td

1− z−1

Tsz−1

)−1
uk + yk,

=
[K(1− z−1)Tsz

−1 + TiT
2
s z
−2 + Td(1− z−1)2

Tsz−1(1− z−1)

]−1
uk + yk,

=
Tsz
−1 − Tsz−2

Td + (KTs − 2Td)z−1 + (TiT 2
s + Td −KTs)z−2

uk + yk.

(2)

Substituting (2) in y∗k = G∗clrk, the desired output y∗k then
becomes,

y∗k =

G∗cl(Tsz
−1 − Tsz−2)

Td + (KTs − 2Td)z−1 + (TiT 2
s + Td −KTs)z−2

uk +G∗clyk.

(3)

Before proceeding, we define two filtered input and output
signals,

ufk , G∗cl(1− z−1)uk,

yfk , (1−G∗cl)yk,
(4)

and a filter that contains K, Ti and Td,

Fc(z
−1) , f0 + f1z

−1 + f2z
−2,

, Td + (KTs − 2Td)z−1 + (TiT
2
s + Td −KTs)z−2.

(5)

Applying the definitions in (4) and (5), ‖yk − y∗k‖22 is then
given by,

‖yk − y∗k‖22 = ‖yfk −
Tsz
−1

Fc(z−1)
ufk‖

2
2.

Therefore, the tuning problem can be converted to the
least squares format,

min
f0, f1, f2

‖yfk −
Tsz
−1

Fc(z−1)
ufk‖

2
2. (6)

For given f0, f1 and f2, the controller parameters, i.e., K,
Ti and Td, are computed by,[

K
Ti
Td

]
=

 0 0 1
Ts 0 −2
−Ts T 2

s 1

−1 [f0f1
f2

]
. (7)

It is remarked that the filtered signals ufk and yfk are
both known and the defined filter Fc(z

−1) contains all
the controller parameters to design. Moreover, the matrix
in (7) is always non-singular for Ts > 0.

3. THE RECURSIVE IMPLEMENTATION

Based on the proposed tuning approach, we will now
provide the recursive procedure to solve the optimization
problem in (6) with consideration of measurement noise
added in the output channel, see Fig. 2.1. We shall first
look at the characteristics of noise and then introduce the
refined recursive instrumental variables (RIV) algorithm
to calculate the tuning parameters.

3.1 Characteristics of Noise

Taking the measurement noise into account, we can write
yk as the sum of the following two terms:

yk =
PC

PC + 1
rk +

1

PC + 1
nk, (8)

where nk is supposed equal to L(z−1)
M(z−1)εk and εk is a white

noise. From the definition in (4), it is clear that the noise

part of yfk can be represented in the colored noise form

of L′(z−1)
M ′(z−1)εk, where the noise filters L′(z−1) and M ′(z−1)

are defined as

L′(z−1)

M ′(z−1)
,

(1−G∗cl)L(z−1)

(PC + 1)M(z−1)
,

,
l0 + l1z

−1 + l2z
−2 + · · ·+ lnl

z−nl

1 +m1z−1 +m2z−2 + · · ·+mnmz
−nm

.

(9)

Note that, in the presence of the colored noise, the
standard least squares methods cannot maintain the es-
timation consistency in solving the optimization problem
in (6) and the estimated controller parameters may give
unsatisfactory control performance. Therefore, in this case,
we’ll consider an alternative method, i.e., the refined IV
method, to estimate tuning parameters.

3.2 Definitions

Before proceeding, below we define two parameter vectors
to be used later. For the time being, we consider the case
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of PID control, i.e., f0 6= 0.

θ ,

[
f1
f0
,
f2
f0
,
Ts
f0

]T
, (10)

η , [m1, · · · , mnm
, l0, l1, · · · , lnl ]

T
. (11)

θ contains all the controller parameters and η contains
all the noise filter parameters. The estimated parameter

vector at time k will be noted as (̂·)k, e.g., θ̂k is the
estimate of θ at time k.

In addition, we introduce another two pre-filtered input

and output signals: ufk
∗ and yfk

∗, which are expressed as,

uf
∗

k ,
M̂ ′(z−1)

L̂′(z−1)F̂c(z−1)
ufk , (12)

yf
∗

k ,
M̂ ′(z−1)

L̂′(z−1)F̂c(z−1)
yfk . (13)

The purpose of this filtering is to decompose the estimation
of θ and η into two parts, which will be seen soon after.
The input and output signals are both pre-filtered by the
noise filters and so the noise effect is filtered out at each
recursive step.

Finally, we define several data vectors to simplify nota-
tions.

ψk ,
[
−x̂∗k−1, −x̂∗k−2, u

f∗

k−1

]
, (14)

φk ,
[
−yf

∗

k−1, −y
f∗

k−2, u
f∗

k−1

]
, (15)

ωk , [−ε̂k−1, . . . , −ε̂k−nm , êk, . . . , êk−nl ] , (16)

where x̂∗k is the so-called instrumental variable (IV) defined
as

x̂∗k ,
Tsz
−1

F̂c(z−1)
uf
∗

k = ψkθ̂k,

and ε̂k , yfk − x̂k.

3.3 The Recursive RIV Algorithm

The recursive RIV algorithm applied here stems from the
work in Young et al. (1980). The algorithm below includes
the initialization and iteration two stages. At the iteration
stage, PID controller parameters will be firstly estimated
(see steps 3-6) and the noise filter parameters are then
calculated (see steps 7-9).

Algorithm 1 PID Control

Initialization:
1: Generate initial parameter vector θ̂0 with existing PID

controller parameters and generate η̂0 with random
parameters.

2: Set the initial covariance matrices P0 = pI and Q0 = qI
with p, q � 1.

Iteration:
3: Compute uf

∗

k and yf
∗

k with (4), (12) and (13).

4: Compute the IV variable x̂∗k.

5: Construct the data vectors ψk, φk using (14)-(15).

6: Update the PID controller parameters,

êk = F̂c(z
−1)yf

∗

k − Tsu
f∗

k−1,

Pk = Pk−1

(
I− ψT

k φkPk−1

1 + φkPk−1ψT
k

)
,

θ̂k = θ̂k−1 + Pkψ
T
k êk.

7: Compute ε̂k = yfk − x̂k.

8: Construct the data vectors ωk using (16).

9: Update the noise filter parameters,

Qk = Qk−1
(
I− ωT

k ωkQk−1

1 + ωkQk−1ωT
k

)
,

η̂k = η̂k−1 +Qkω
T
k (M̂ ′(z−1)ε̂k − L̂′(z−1)êk).

3.4 PI Control

The above we have discussed the case of PID control. In
the case of PI control, i.e., f0 = 0 and thus Fc(z

−1) reduces
to,

Fc(z
−1) = Tsz

−1[K + (TiTs −K)z−1]. (17)

By cancelling the common factor of Tsz
−1 in (6), the

optimization problem can be rewritten into,

min
f ′0, f ′1

‖yfk −
1

F ′c(z
−1)

ufk‖
2
2. (18)

where F ′c is defined as

F ′c(z
−1) , f ′0 + f ′1z

−1,

, K + (TiTs −K)z−1.
(19)

Moreover, the corresponding parameter vector of θ needs
to be redefined as,

θ′ ,

[
f ′1
f ′0
,

1

f ′0

]T
, (20)

and likewise ψk and φk are replaced by,

ψ′k ,
[
−x̂∗k−1, u

f∗

k

]
, (21)

φ′k ,
[
−yf

∗

k−1, u
f∗

k

]
. (22)

For the case of PI control, the recursive RIV algorithm
can be obtained by replacing θ, ψk and φk with their
counterparts as above defined. The algorithm details are
similar as Algorithm 1 and hence omitted here for brevity.

4. SIMULATION RESULTS

In this section, we show two examples to validate the
effectiveness of the proposed approach. The first example
is a dynamic system written in the form of the first-order-
plus-dead-time (FOPDT) model,

G0(s) =
0.2

10s+ 1
e−5s,

where the time constant is 10 and the time delay is 5. The
noise filter is,

L(z−1)

M(z−1)
=

0.6993− 0.1107z−1

1− 0.7555z−1 + 0.04979z−2
.

where the e(s) is a white noise signal with zero mean and
its variance equal to 1. The signal to noise ratio (SNR) is
approximately 30dB.
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The aim is to re-tune the PID parameters such that the
closed loop system settles down within 80 seconds. To
achieve this goal, we pick the target system G∗cl as

G∗cl =
0.0059

1− 1.846z−1 + 0.8521z−2
, (23)

The input and output signals are collected and displayed
in Fig. 2. Fig. 3 displays the filtered input and output
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Fig. 2. The input signals and output signals

signals used in the recursive RIV algorithm.
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Fig. 3. The filtered signals of ufk and yfk

Fig. 4 shows the step response of the closed loop system
with the initial and updated controller parameters. By
using the new control parameters, the closed loop system
performs as desired, although the collected data is rela-
tively noisy and the system has a time delay.

The second example shows the level control of a water
tank, see Fig. 5. Water is pumped into the tank at the top
at rate of flow of ku(t) m3/sec and the water flows out of
the tank through a hole at the bottom at the rate of flow of
a
√

2gy m3/sec, where a, y and g are respectively the area
of the bottom hole, the water level and the gravitational
acceleration. A is the cross-sectional area of the tank.
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Fig. 4. The step response of the closed loop system with
initial and updated controller parameters.
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Fig. 5. The tank level control

From the mass conservation principle, we get

Aẏ = ku− a
√

2gy. (24)

The parameters in the above equation are

• A = 2.3× 10−3 m2

• A = 7.1× 10−6 m2

• g = 9.82 m/sec2

• k = 3.9× 10−6 m3/(sec·V)

It can be seen that the target system is nonlinear. We
employ a PI controller to control the level. The initial
PI parameters are K = 1 × 10−6 and Ti = 1 × 10−5.
The sampling time is 1 second. The measurement noise is
simulated with the following filter and the signal to noise
ratio is around 40 dB,

L(z−1)

M(z−1)
=

0.3712− 0.2011z−1

1− 0.1147z−1 + 0.1353z−2
. (25)

In this example, G∗cl is chosen to be in the following form,

G∗cl =
8.6578× 10−5

1− 1.9869z−1 + 0.9870z−2
, (26)

which corresponds to approximately 400 seconds rising
time, see Fig. 6.

Fig. 7 shows the step response of the closed-loop response
with the initial PI parameters and the newly tuned PI
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Fig. 6. The step response of the target system

parameters. We observe that the tuned PI controller
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Fig. 7. The step response of the closed loop system with
initial and updated controller parameters.

works very well although the initial PI parameters give
unstable step response. Moreover, it is worth pointing
out that the target system is nonlinear, but the proposed
algorithm is still able to catch the system characteristics.
Compared with the model-based tuning methods, the
proposed tuning method can avoid the risk of model
mismatch that usually happens at the identification step.

5. CONCLUSION

This paper has briefly reviewed the model-free tuning of
feedback controllers. The practical issues were addressed
and we proposed a new model-free tuning approach to
compute PID parameters with recursive implementation
procedures. The side effect of measurement noise was ana-
lyzed. A recursive RIV algorithm was provided. The simu-
lation examples have shown that the proposed method can
be applied to nonlinear systems and the system with time
delay. Especially, when initial PID parameters are badly
tuned, the proposed algorithm still works fine.

The research on the model-free tuning problem is still
at the developing stage and there are many issues that
have not fully explored. We would like to provide two
interesting ones that are valuable to be further studied.
One is to incorporate delay estimation in the recursive
tuning procedures. In process industries, most processes
contain delays and some of them contain very large time
delay. Although the proposed algorithm works well for
systems with small time delay, it becomes inaccurate for
systems with large latency. Therefore, combining delay
estimation procedure is of great importance. Second, more
attention should be paid to the disturbance attenuation.
As well known, the robustness of the control systems is
of top priority for end-users. When disturbance exists, it
is necessary to take some additional treatment to extract
the disturbance information and hence improve the control
performance.
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