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Abstract: In this paper the authors present a novel control algorithm based on control error
sign–dependent variable-fractional-order PI controller. The algorithm is being optimized via
ITSE criterion for control error. It is tested both for unconstrained control signal and a more
real-case scenario, i.e. ±2.5 saturation on control signal. The algorithm is tested for A-,B-,D-
and E-type variable-order PI controllers and compared to basic PI and fractional-PI (FPI)
controllers. Important parameters, including rise and settling time, overshoot and peak time
of unit-step response, as well as graphical representation of unit-step response are presented.
Conducted numerical simulations show some interesting behaviour of the A-type definition both
in non-limited and limited control signal cases, i.e. switching between derivation and integration
action. Moreover, collected unit-step response parameters indicate the A-type definition to be
the best behaving in all considered criteria. However, some unwanted minor oscillations in the
unit-step response are to be observed, whose origin will be investigated in further research.

Keywords: Automatic control (closed-loop), Proportional plus integral action controllers,
fractional-order systems, variable fractional-order derivatives

1. INTRODUCTION

The fractional calculus is a generalization of the tradi-
tional differential calculus for a case when integrals and
derivatives are in not only integer but also fractional-
order. This generalization can be used to introduce more
accurate models or more efficient control algorithms. The
fractional calculus approach is especially efficient for mod-
eling systems based on diffusion processes. In Sierociuk
et al. (2011); Dzielinski and Sierociuk (2010); Dzielin-
ski et al. (2010b), the heat transfer process was suc-
cessfully modeled using fractional models based on nor-
mal and anomalous diffusion equation. Papers Dzielinski
et al. (2010a,b); Dzielinski and Sierociuk (2008) present,
also results of high accurate models of ultracapacitors,
the electrical energy storage elements which base on the
Helmholtz effect and diffusion. The fractional calculus can
be also used in control algorithms for obtaining fractional
controllers. The fractional controllers can be implemented
for systems modeled by both integer order and fractional-
order equations.

The case when order is changing during time recently
starts to be intensively developed, however description
of such a systems is much more complicated than for
constant-order case. For variable-order case we can indi-
cate four main types of behavior, how the order changing
can have influence in derivative results. This behavior can
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be intuitive described in the form of equivalent switching
schemes. We can distinguish four of these mechanisms,
viewed as switching strategy schemes, which are: input-
reductive, input-additive, output-reductive and output-
additive (Sierociuk et al. (2015a,b); Macias and Sierociuk
(2014)), whose also allow to make a clear categorization of
variable-order operators. Also in control applications, as
it was presented in Sierociuk and Macias (2013), different
types of variable-order operators implemented in controller
imply different behavior of final control system. Applica-
tions of variable-order derivatives and integrals arise also
in control Ostalczyk (Aug.); Ostalczyk and Duch (Aug.);
Ostalczyk and Rybicki (2008).

One of the problem in practical applications of fractional-
order controllers is implementation of fractional-order
derivatives. Various approximations of fractional deriva-
tives are described in literature. In Chen et al. (2004), con-
tinued fraction expansion is used to discretizing fractional-
order derivatives. Article Vinagre et al. (2000) presents
various types of fractional-order derivatives approxima-
tions in control theory. In Stanislawski and Latawiec
(2012), normalized finite fractional differences are pre-
sented. Papers Tseng (2004); Tseng and Lee (2011); Sheng
et al. (2010) present methods for numerical realization of
fractional variable-order integrators or differentiators.

In this paper we will presents a new variable-order control
algorithm which will change a fractional-order of integra-
tion action accordingly to the sign of control error.
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The paper is organized as follows: Section 2 presents a
basis of fractional constant and variable-order derivative
definition. In Section 3 the proposed variable-order PI
control algorithm is presented. Numerical examples of pro-
posed algorithm are presented and compared in Section 4.

2. FRACTIONAL VARIABLE-ORDER OPERATORS

Below, we recall the already known different types of
fractional constant and variable-order derivatives and dif-
ferences.

2.1 Definitions of variable-order operators

The following fractional constant-order difference of Grün-
wald-Letnikov type will be used as a base of generalization
onto variable-order

∆αxl =
1

hα

l
∑

j=0

(−1)j

(

α

j

)

xl−j , (1)

where α ∈ R, l = 0, . . . , k, and h > 0 is a sample time.

We will consider the following four types of fractional
variable-order derivatives and their discrete approxima-
tions (differences). We admit the order is changing in time,
i.e., α(t) ∈ R for t > 0; and in discrete-time domain αl ∈ R

for l = 0, . . . , k, where k ∈ N.

The A-type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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This definition is obtained by replacing a constant-order
α by variable-order αk, and is equivalent to the output-
reductive switching scheme Sierociuk et al. (2015b). For
the case of switching between two orders this switching
scheme assumes, that the output of the variable-order
derivative is switched between outputs of appropriate
constant-order derivatives for the same input signal. This
implies that behavior of this definition is rather close to
switched system.

The B-type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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)
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Differently than the A-type variable-order derivative B-
type definition assumes that coefficients for past samples
are obtained for order that was present for these samples.
The particular (input-additive) switching scheme corre-
sponding to this definition was presented in (Sierociuk
et al., 2015a).

Besides of presented above iterative definitions, we use also
the following recursive type of variable-order difference
definitions.

The D-type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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In this definition, coefficients are obtained similarly to
the A-type variable-order derivative, however, recursive
type of calculation the derivative implies that this type
of definition gives different results and is characterized
by different (input-reductive) switching scheme in details
described in (Sierociuk et al., 2015b).

The E-type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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The E-type definition assumes, that coefficients are ob-
tained similarly as in B-type definition however, due to
recursive type of definition, different behavior is to be ob-
served and is characterized by different equivalent (output-
additive) switching scheme (Macias and Sierociuk, 2014).

3. PROPOSED ALGORITHM

The algorithm proposed in this paper is a control error
dependent PI controller integrator order. It measures the
control error and inputs one of two integrator orders
(α1,α2) for positive and negative sign of control error
respectively. The algorithm works based on basic formula,
given as follows:

α(t) =
{

α1 sgn(e(t)) > 0
α2 sgn(e(t)) < 0

. (2)

Simple block diagram of a regulator with proposed algo-
rithm is presented in Fig. 1.

Gain (K) and integrator time constant (T ) as well as
two integrator orders (α1, α2) are obtained via numerical
minimization of an ITSE cost function given as follows

eIT SE =
tend
∑

i=0

(eiti)2 , (3)

where ti = iTs, with some real-case scenario constraints
on parameters given as follows
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K ≤ 15
|α1| ≤ 1.2
|α2| ≤ 1.2
T − unconstrained

.

In order to minimize that cost function, authors used
MATLAB®’s fmincon function, that in general allows to
find minimum of constrained nonlinear multivariable func-
tion. Fmincon used the interior-point algorithm, i.e. algo-
rithm that solves a sequence of approximate minimization
problems.

It is possible to implement different methods of changing
integrator order i.e. different switching deffinitions (espe-
cially Ti = {A, B, D, E}) may be applied. Due to significant
differences in implementation of order switching procedure
it is possible that (as it was shown e.g. for variable-order
anti-windup algorithm in Sierociuk (2018)) different imple-
mentations may result in completely different performance
of the controller.

+ +T

K

u(t)e(t)+ +
+

-

> 0

α1

α2

α(t)

r(t)
TiD−α(t)

Fig. 1. Scheme of proposed variable-order control algo-
rithm

4. NUMERICAL EXAMPLES

This section contains numerical examples of the approxi-
mation methods, computed in Matlab/Simulink environ-
ment, by using dedicated numerical routines Sierociuk
(2012), developed by one of the authors.

In order to compare different switching definition types
of proposed algorithm and relate them to known PI and
fractional-PI (FPI) controllers, authors simulated step
response of a plant with a transfer function given as
follows:

P (s) =
1

s2 + 3s + 2
. (4)

The simulation was conducted in 20s time horizon with
variable-order derivative implementation length (Nbuf) of
2000, time sampling (Ts) 0.01, and an unit-step input
signal with step time equal to 1s.

Two cases of a simulated structure i.e. without any re-
strictions on control signal (u(t)) and to provide a more
realistic case, with ±2.5 saturation block applied to control
signal were taken into consideration.

In general it is not an intuitive problem to judge a
priori which definition is most suitable for presented task.
In order to compare which of the examined definitions
(Ti = {A, B, D, E}) is, authors compared a number of
step-response parameters, i.e. Rise Time, Settling Time,
Overshoot and Peak Time, and also minimization task
results, i.e. minimal cost function value (MinVal).

For further read, let us consider following examples, as
mentioned before.
Example 1. System without saturation

The block diagram of an examined case is shown in Fig. 2.
In this case there are no restrictions given to the control
signal u(t).

+ +T

K

P(s)
u(t)e(t) y(t)+ +

+

-

> 0

α1

α2

α(t)

r(t)
TiD−α(t)

Fig. 2. Scheme of control system without control signal
saturation

Parameters of controllers obtained during minimization
process for this example are shown in Table 1.

Table 1. Summarized results of obtained con-
trollers parameters for the case of system with-

out saturation

Type T α1 α2 K MinVal

A 166.7734 -1.1673 1.0014 14.8761 23.3901
B 6.0479 -1.1252 -1.2000 15.0000 45.3297
D 5.4426 -1.0015 -1.1934 14.8624 44.0989
E 4.9115 -1.0105 -1.0950 11.6619 49.8921
PI 6.4553 − − 15.0000 48.4950

FPI 5.8760 -1.0737 − 15.0000 46.6394

What is worth noticing, in all of examined variable-
order definition type cases, except A-type, the difference
between α1 and α2 orders is not significant and is in
the range of negative values close to -1. It implies that
those definition types are in a range of integration action.
However in the A-type definition case, the orders vary from
integration to derivative action. It is also important, that
the best result of cost function minimization is obtained
for A-type definition.

Following figures show results of an unit-step response
for obtained model parameters. Detailed summary of con-
ducted tests is gathered in Table 2.
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Fig. 3. Comparison of results for integer and fractional
constant-order PI controllers

Firstly, authors compared regular PI controller with
fractional-PI controller in order to check whether constant-
fractional-order PI controller is by any means better than
classical integer-order controller. As it can be observed
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in Fig. 3, obtained results are very close to each other,
however FPI tends to have slightly better performance.
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Fig. 4. Comparison of results for fractional constant-order
and variable-order A- and B- type PI controllers

In Fig. 4 a comparison of results for fractional constant-
order and variable-order A- and B-type PI controllers is
presented, in order to compare which of iterative defini-
tions behaves better in examined case.
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Fig. 5. Comparison of results for fractional constant-order
and variable-order D and E type PI controllers

In Fig. 5 a comparison of results for fractional constant-
order and variable-order D- and E-type PI controllers is
presented, in order to compare which of recursive defini-
tions behaves better in examined case.

Table 2. Summarized results of obtained unit-
step response parameters for the case of system

without saturation

Type RiseTime SettlingTime Overshoot PeakTime

A 0.2059 1.475 6.146 1.35
B 0.3651 3.189 25.66 1.84
D 0.3648 3.156 25.62 1.84
E 0.4299 5.035 19.96 1.95
PI 0.358 4.638 27.49 1.84

FPI 0.3638 4.492 25.74 1.84

In Table 2 summarized results of obtained unit-step re-
sponse parameters for the case of system without satura-
tion are presented. Definitions B, D and E hold similar
results in terms of rise time, settling time, overshoot and
peak time. However, E-type definition holds noticeably
longer settling time than any other. B- and D-type def-
initions give slightly bigger overshoot than the others,
but still very close to each other. On the other hand,
A-type definition is definitely standing out in presented
comparison. Most significant difference is observed in the
overshoot and rise time. However, the shape of the output
is highly dubious and unnatural. Due to the fact that the

response has strong oscillatory behavior, which is probably
caused by rapid switching of control signal, makes obtained
regulator almost surely inapplicable in a real-case system.
Example 2. System with ±2.5 saturation

The block diagram of an examined case is shown in Fig. 6.
In this case the control signal u(t) is limited to the range
of ±2.5.

+ +T

K

P(s)
u(t)e(t) y(t)+ +

+

-

> 0

α1

α2

α(t)

r(t)
TiD−α(t)

Fig. 6. Scheme of control system with control signal
saturation

Parameters of controllers obtained during minimization
process for this example are shown in Table 3.

Table 3. Summarized results of obtained con-
trollers parameters for the case of system with

±2.5 saturation

Type T α1 α2 K MinVal

A 5.9669 -0.9349 1.1961 6.2983 174.0059
B 1.8609 -1.0032 1.1859 14.9995 173.6294
D 1.7819 -1.0347 -1.0005 11.8909 173.9427
E 1.9128 -1.1521 -1.0141 12.2165 177.5740
PI 1.9029 − − 15.0000 173.9237

FPI 1.8606 -1.0064 − 14.9999 173.8965

Similarly to the previous example, A-type definition pre-
served its behavior of switching between integral and
derivative action, however in this case, B-type definition
holds the same property. For recursive definitions, the
tendency to stay in a negative-order that is close to -1
is preserved. On the contrary, no significant difference in
cost function minimization parameter is to be observed for
all types of controllers.

Following figures show results of an unit-step response
for obtained model parameters. Detailed summary of con-
ducted tests is gathered in Table 4.
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Fig. 7. Comparison of results for integer and fractional
constant-order PI controllers

As it is presented in Fig. 7, obtained results for integer and
fractional constant-order cases are very close to each other,
however FPI tends to have slightly better performance.

As it is presented in Fig. 8 B-type definition behaves sim-
ilarly to FPI, however A-type definition gives noticeably
different result.
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Fig. 8. Comparison of results for fractional constant-order
and variable-order A- and B-type PI controllers

0 2 4 6 8 10 12 14 16 18 20

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

A
m

pl
itu

de
 [-

]

FPI fractional constant order controller
Variable order controller Def. D
Variable order controller Def. E

Fig. 9. Comparison of results for fractional constant-order
and variable-order D- and E-type PI controllers

In Fig. 9 no important difference is to be observed between
FPI and D-type definition, however noticeably different
result is obtained for E-type definition.

Table 4. Step-response characteristics for the
case of system with ±2.5 saturation

Type RiseTime SettlingTime Overshoot PeakTime

A 1.5549 3.165 1.1678 3.37
B 1.5549 3.6683 2.2401 3.54
D 1.5549 3.7933 2.801 3.58
E 1.5549 4.3135 6.914 3.74
PI 1.5549 3.8086 3.153 3.57

FPI 1.5549 3.7797 2.9853 3.56

As it was mentioned before, values of obtained minimum
of cost function for all of presented controller types were
close and not very informative, some important differences
in most of unit-step response parameters appear. Worst
performance in terms of overshoot is presented by E-type
definition, and the best by A-type, other types perform
close to each other. As far as settling time is concerned
the situation is quite similar. Also the peak time indicates
the A-type definition to be the best performing, and E-
type to be the worst with other definitions comparable to
each other. In the case of rise time no difference is observed
most probably due to fact, that in the first stage all of the
controllers apply maximal value of the control signal that
is equal in each case due to assumed restrictions in that
signal.

Despite the fact that A-type definition provides best unit-
step response parameters, some undesirable minor cyclic
behavior is observed. This behavior apparently has an
effect on minimization of the cost function, which yield
to the fact that the A-type definition advantage was not

noticeable in the obtained minimal value of the objective
function presented in Table 3.

5. CONCLUSION

In this paper a novel PI-controller algorithm was pre-
sented. Proposed algorithm was based on variable-order
derivative and assumed that the order strictly depends
on the control error. The algorithm was tested for differ-
ent types of variable-order derivative definitions and for
limited and non-limited control signal cases. Results of
numerical simulations clearly show that the A-type defini-
tion is very suitable for the examined case. As it was the
only one definition type in non-limited control signal and
one of two definitions in limited control signal cases that
was switching between integration and derivation action
it is a promising idea for further investigation. However,
some minor undesirable oscillations that occur in the unit-
step response for this type of definition reduce ability of
practical application. Minimization of this effect will be
the important area of further research.
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