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József Kuti, Péter Galambos
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Abstract: This study investigates the computer-regulated propofol administration in anesthesia
during medical interventions considering output feedback and robust PID control. The paper
applies the Affine Tensor Product Model Transformation to derive the appropriate polytopic
quasi-LPV representation of the closed-loop dynamics. This model form enables the use of
LMI-based optimisation techniques to evaluate the closed loop performance. Despite the highly
non-convex nature of this output feedback problem, the PID gains can be locally tuned
through simplex optimisation. The proposed method provides a systematic way of tuning PID-
controlled propofol administration for individual patients with theoretically established worst-
case performance measures.
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1. INTRODUCTION

Polytopic model-based control and especially the polytopic
Tensor Product (TP) model-based control aims to ana-
lyze and synthesize control loops for parameter-dependent
and nonlinear plants given as Linear Parameter Varying
(LPV) or quasi-LPV forms (see Boyd (1994); Baranyi
et al. (2013)). The purpose is mainly to derive a convex
optimisation program, which can be solved via interior
point methods (see Nesterov and Nemirovsky (1988)).

The design of output feedback methods, - like PID control,
which has great practical relevance - are usually highly
non-convex problems. There are different approaches to
convexify the problems to apply local optimisations see
Qiu et al. (2013); Crusius and Trofino (1999); Bianchi et al.
(2008); Thevenet et al. (2004); Hassibi et al. (1999).

In this paper, we consider the propofol administration
problem during anesthesia to achieve the appropriate
depth of hypnosis (DOH) without considering the remifen-
tanil that is applied to ensure pain management. Clini-
cal tests showed that the adequately designed dynamical
model-based controller could perform better than the man-
ual administration (see Hemmerling et al. (2010)). The
depth of hypnosis can be measured through Bispectral
Monitor index (see Orliaguet et al. (2015)), M-Entropy
and wavelet-based indices (WAVCNS , WAVANS). The
wavelet-based indices allowed to measure the depth of
hypnosis without delay, and its dynamics shows LTI char-
acteristics (see Pilge et al. (2006); Bibian and Zikov (2011);
Bibian et al. (2011)).

The depth of hypnosis is controlled via PID controller by
Padula et al. (2015); Van Heusden et al. (2014) according
to the practical opportunities, patient specific controllers
were designed via LPV/LMI framework by Lin et al.
(2008), MPC controller is proposed by Nascu et al. (2015)

and the opportunities of robust fixed point transformation
is also considered by Tar et al. (2016); Dineva et al. (2016).

In this study, we consider the local optimisation of PID
controller by applying LMI-based control analysis on the
polytopic TP model of the regulated propofol adminis-
tration. First, a qLPV model is derived, that gives an
exact representation of the investigated system including
the nonlinearities, saturation, time-delay, and sampling
according to the desired equilibrium state. Then the poly-
topic TP model is constructed with appropriately chosen
parameter sets. The closed-loop system can be obtained
with the given PID gains. Finally, the closed-loop per-
formance can be evaluated via convex optimisation, and
based on the results the PID gains can be tuned locally to
improve the performance.

2. BASIC CONCEPTS

2.1 Propofol administration and DOH measurement model

This subsection describes the model of propofol adminis-
tration that is considered in this study. The model is re-
called based on Ionescu et al. (2014); Padula et al. (2015);
Van Heusden et al. (2014)) and for DOH measurement
via NeuroSENSE NS-701 Bibian et al. (2011); Bibian and
Zikov (2011).

The pharmacokinetic compartment of propofol adminis-
tration is usually modeled as a third-order transfer func-
tion. It is described in state-space form as

Ċp = −(k10 + k12 + k13)Cp + k21Cm + k31Cf +
u

V1
, (1)

Ċm = k12Cp − k21Cm, (2)

Ċf = k13Cp − k31Cf , (3)

where Cp denotes the propofol concentration in the in-
tervascular blood plasma ([mg/L]), Cm the concentration
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Parameter Value

V1[L] 4.27

V2[L] 18.9− 0.391(age[year]− 53)

V3[L] 2.38

lbmmales[kg] 1.1weight[kg]− 128
weight[kg]2

height[cm]2

lbmfemales[kg] 1.07weight[kg]− 148]
weight[kg]2

height[cm]2

1.89 + 0.0456(weight[kg]− 77)
Cl1[L/min] −0.0681(lbm[kg]− 59)

+0.0264(height[cm]− 177)

Cl2[L/min] 1.29− 0.024(age[year]− 53)

Cl3[L/min] 0.836

k10, k12, k13 [min−1]
Cl1
V1

,
Cl2
V1

,
Cl3
V1

k21, k31 [min−1]
Cl2
V2

,
Cl3
V3

kd, ka [min−1] 0.456

Td [s] 5

Table 1. Parameters of the PK-PD model
(Ionescu et al. (2014))

# Age H[cm] W[kg] Gender CE50 γ E0 Emax

1 40 163 54 F 6.33 2.24 98.8 94.10

2 36 163 50 F 6.76 4.29 98.6 86.00

3 28 164 52 F 8.44 4.10 91.2 80.70

4 50 163 83 F 6.44 2.18 95.9 102.0

5 28 164 60 M 4.93 2.46 94.7 85.30

6 43 163 59 F 12.00 2.42 90.2 147.0

7 37 187 75 M 8.02 2.10 92.0 104.0

8 38 174 80 F 6.56 4.12 95.5 76.40

9 41 170 70 F 6.15 6.89 89.2 63.80

10 37 167 58 F 13.70 1.65 83.1 151.0

11 42 179 78 M 4.82 1.85 91.8 77.90

12 34 172 58 F 4.95 1.84 96.2 90.80

13 38 169 65 F 7.42 3.00 93.1 96.58

Table 2. Considered set of patients (Padula
et al. (2015))

in the muscles ([mg/L]) and Cf in the fat ([mg/L]), the
propofol infusion denoted by u and given in [mg/min].
The related coefficients are detailed in Table 1.

The pharmacodynamic model of the drug is a delayed first
order system

Ce(s) = e−Tds
ka

s+ kd
Cp(s). (4)

The saturation is described by the Hill-function and influ-
enced by the nociceptive stimulations (d) of the surgery
as

E(t) = E0 − Emax
Ce(t)

γ

CγE50 + Ce(t)γ
+ d(t), (5)

where the parameters are patient-dependent. A few typical
values for benchmark purposes are recited in Table 2.

The value E describes the DOH range from 0−100, where
0 corresponds to isoelectric EEG, 90− 100 corresponds to
awakeness, and 40 − 60 is the desired, typical range for
anesthesia.

The NeuroSENSE NS-701 Monitor (NeuroWave Systems
Inc, OH) provides the WAVCNS (Wavelet-based Anes-
thetic Value for Central Nervous System) as a delay-free,
time-invariant and linear quantifier of cortical activity.
Its dynamics can be described via a two-order transfer
function as

WAVCNS(s) = H(s)E(s), (6)

where

H(s) =
0.0115

s2 + 0.1841s+ 0.0115
. (7)

2.2 LPV/qLPV modelling

The discrete-time, linear, parameter-varying models will
be denoted as[

x(T + 1)
y(T )
z(T )

]
=

[
A(p) Bu(p) Bd(p)
Cy(p) Dyu(p) Dyd(p)
Cz(p) Dzu(p) Dzd(p)

]
︸ ︷︷ ︸

S(p)

[
x(T )
u(T )
d(T )

]
, (8)

where x(T ) ∈ Rn denotes the state vector, u(T ) ∈ Rp
is the input signal, d(T ) ∈ Rk are the disturbance, while
z(T ) is the performance channel. The size of parameter-
dependent matrices are chosen accordingly.

For example, based on the Bounded Real Lemma, the
stability and the disturbance rejection performance can be
verified via convex optimisation, see Gahinet and Apkarian
(1994).

Lemma 1. System (8) with u = 0 is stable, and ||Dzd(p)+
Cz(p)(sI−A(p))−1Bd(p)||∞ < γ if there exists a function
X(p) such that

−X(p) X(p)Φ(p) X(p)Bd(p) 0
ΦT (p)X(p) −X(p) 0 CT

z (p)
BT
d (p)X(p) 0 −γI DT (p)

0 Cz(p) D(p) −γI

 ≺ 0 (9)

for all considered p.

The Linear Matrix Inequality based control design method-
ologies can be applied on nonlinear systems as well by
rewriting them into the form of (8). It is called quasi-LPV
model because the parameters depend on some of the state
variables.

2.3 Polytopic TP model-based controller design

Consider the qLPV model (8) and its parameter depen-
dent system matrix as a mapping from the investigated
parameter domain

Ω = [p
1
, p1]× . . . [p

K
, pK ] (10)

to the space of system matrices (S) as S(p) : Ω→ S.

By defining parameter sets as p(1), p(2), ... p(K) from
the scalar parameters and denoting the corresponding
parameter domains by Ω1, Ω1, ... ΩK , the Polytopic Tensor
Product model can be defined as a form that is polytopic
for all parameter sets. Polytopic TP model is defined as
follows.

Definition 1. (Polytopic Tensor Product model). The
LPV/qLPV model (8) with system matrix given as

S(p) = S
K
�
k=1

w(k)(p(k)) (11)

in which the core tensor is on S, it has sizes (J1×· · ·×JK),
and the Jk values are the number of vertices of the

S(p) =

Jk∑
j=1

(
Sjk=j

K
�

l=1,l 6=k
w(l)(p(l))

)
w

(k)
j (p(k)) (12)

polytopic description, where the w
(k)
1 (p(k)), ..., w

(k)
Jk

(p(k))

weights denote convex combination for all p(k) ∈ Ωk,
k = 1..K.

To derive Polytopic TP forms, the affine TP form is
defined as a multi-affine description. It is based on an
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affine Singular Value Decomposition (ASVD), that can be
written for a vector function f : Ω→ RA as

f(p) =

D∑
d=1

vd(p)fd + fD+1 =

D+1∑
d=1

vd(p)fd, (13)

where the fd (d = 1, ..., D) vectors are orthogonal and
ordered by norm (σ1 ≥ σ2 ≥ ... ≥ σD > 0), and
furthermore, vD+1(p) = 1, and the vd(p) functions are
orthonormal for d = 1, ..., (D + 1).

Definition 2. (Affine TP model). The model (8) is called
an Affine TP model if the matrix S(p) is given as

S(p) = Saff
K
�
k=1

v(k)(p(k)), (14)

in which the Saff core tensor is on S as Saff ∈
S(D1+1)×···×(DK+1), the Dk (k = 1..K) values are called
k-mode dimensions, and its expansion

S(p) =

Dk+1∑
d=1

(
Saffdk=d

K
�

l=1,l 6=k
v(l)(p(l))

)
v
(k)
d (p(k)) (15)

is ASVD with σ
(k)
1 , ..., σ

(k)
Dk

for each k.

Based on this form, the (11) Polytopic TP model can
be obtained by determining enclosing polytopes for all
v(k)(p(k)) trajectories in the Dk dimensional spaces for
all k = 1..K. For more details, see Kuti et al. (2017b,a);
Kuti and Galambos (2018); Kuti et al. (2017c).

3. MAIN RESULTS

3.1 Derivation of the qLPV model

First consider the continuous time LTI dynamics of the
PK-PD processes. By defining the state variables as dif-
ference from the desired equilibrium state, we can obtain
the following description

q̇1 = −(k10 + k12 + k13)q1 + k21q2 + k31q3 + u/V1,

q̇2 = k12q1 − k21q2,
q̇3 = k13q1 − k31q3,
q̇4 = −kdq4 + kaq1,

where q4 = Ce − Ced.
Then the nonlinear saturation, and the dynamics of the
sensor can be realized as

q̇5 = −q6 + αq4 + d(t),

q̇6 = −0.1841[s−1]q6 + 0.0115[s−1]q5,

where

α = −
EmaxC

γ
E50

(CγE50 + Cγed)(C
γ
E50 + Cγe )

Cγe − C
γ
ed

Ce − Ced
, (16)

Ced = CE50
γ

√
E0 − 50

Emax − E0 + 50
. (17)

By writing it in the form

q̇ = A0(p)q + Bu0u+ Bd0d, (18)

its behaviour in the sampling time can be written as a
discrete-time model

x1:6(T + 1) = eA0(p)Tsx1:6(T )+

+ Γ(p)Bu0u(T ) + Γ(p)Bd0d(T ), (19)

where

Γ(p) =

∫ Ts

τ=0

eA0(p)τdτ. (20)

Then the time-delay Td = kTs can be taken into account
by applying k state variables as

x6+i(T + 1) = x6+i−1(T ), (21)

where i = 1, .., k.

Finally, state variables of the PID controller are

x6+k+1(T + 1) = Tsx6+k(T ) + x6+k+1(T ), (22)

x6+k+2(T + 1) = x6+k(T ). (23)

Then the A(p), Bu(p) and Bd(p) matrices of the LPV
model (8) can be written as

A(p) =



eA0(p)Ts

0 0 0 0 0 1
0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

06 . . . 06 06 06 06

0 . . . 0 0 0 0
1 . . . 0 0 0 0
...

. . .
...

...
...

...
0 . . . 1 0 0 0
0 . . . 0 Ts 1 0
0 . . . 0 1 0 0


, (24)

Bu(p) =

[
Γ(p)Bu0

0k+2

]
, Bd(p) =

[
Γ(p)Bd0

0k+2

]
. (25)

The control signal u(t) will be computed as

u(T ) = [P (p) I(p) D(p)]︸ ︷︷ ︸
K(p)

[
x6+k(T )− r(T )

x7+k(T )
(x6+k(T )− x8+k(T ))/Ts

]
︸ ︷︷ ︸

y(T )

,

(26)
in this way, the measured output of the system is

y(T ) =

[
yP (T )
yI(T )
yD(T )

]
=

[
0 . . . 0 1 0 0
0 . . . 0 0 1 0
0 . . . 0 1/Ts 0 −1/Ts

]
︸ ︷︷ ︸

C

x(T )+

+

[−1
0
0

]
r(T ). (27)

The derived qLPV model is an exact description of the
model detailed in subsection 2.1 including the sampling
time and the time-delay. The parameters of the model are

– (non-accessible) E0, Emax, CE50, Ce, γ,
– (known) weight, age, height.

3.2 Derivation of Polytopic TP model

Three parameter sets can be distinguished:

• (E0, Emax, CE50, Ce, γ): influence only α, non-
accessible.

• (weight, height): influence only k10, exactly known.
• (age): influence only k21, k12, exactly known.

For sake of simplicity, consider k10, α, and age as pa-
rameters. Then the following polytopic TP model can be
obtained:

[A(p) Bu(p) Bd(p)] = S ×1 w(1)(α)

×2 w(2)(k10)×3 w(3)(age). (28)

3.3 Optimisation of PID gains

Consider a controller

u = K(p)y, (29)

where K(p) gains can be
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– static gain as K(p) = [P I D],
– parallel distributed polytopic TP form with single

multiplicities

K(p) = K ×1 w(2)(k10)×2 w(3)(age), (30)

– or on higher multiplicities as

K(p) = K ×1 w(2)(k10)×2 w(2)(k10)×3 w(2)(k10)

×4 w(3)(age)×5 w(3)(age). (31)

Then the closed-loop system matrix

Φ(p) = A(p) + Bu(p)K(p)Cy (32)

can be written as a polytopic TP form as well.

The matrix of Lyapunov function-candidate X(p) can also
be structured as a polytopic TP form with arbitrary mul-
tiplicities, that depend only on the constant parameters
for example

– static gain as X(p) = X,
– parallel distributed polytopic TP form with single

multiplicities

X(p) = X ×1 w(2)(k10)×2 w(3)(age), (33)

– or on higher multiplicities as

X(p) = X ×1 w(2)(k10)×2 w(2)(k10)

×3 w(3)(age)×4 w(3)(age). (34)

The definite criteria of Lemma 1 can be transformed into
LMIs via method published by Kuti et al. (2017a) and
solved with interior-point solvers for Lyapunov function-
candidate given in a structure (as (33) or (34)) and a PID
controller.

This way, for robust or gain-scheduling controllers, the
stability and worst case disturbance rejection can be
verified and locally optimised on the parameters P , I, D,
although the static output feedback optimisation is highly
non-convex.

4. NUMERICAL RESULTS

4.1 Derivation of Polytopic TP model

Considered the domain of patients, age, height, weight

age : [10, 90](year) (35)

height : [140, 200](cm) (36)

weight : [50, 100](kg) (37)

and the parameter domains

Ωα = [−17.6,−4.83](L/mg) (38)

Ωk10 = [0.25, 0.69](1/min) (39)

Ωage = [10, 90](year) (40)

Considering sampling time Ts = 1[s] and performing
the Affine Tensor Product Model Transformation, the
following approximating Affine TP model can be obtained

S(p) = Saff ×1 v(1)(α)×2 v(2)(k10)×3 v(3)(age), (41)

where dimensions of the affine descriptions are D1 = 1,
D2 = 1 and D3 = 2 and the weighting functions are
depicted in Fig 1.

Fig. 1. The v(1)(α), v(2)(k10) and v(3)(age) weighting
functions of the derived affine TP model.

Fig. 2. The w(1)(α), w(2)(k10) and w(3)(age) weighting
functions of the derived polytopic TP model.

-2 -1 0 1 2
-6

-4

-2

0

2

Fig. 3. The Minimal Volume Simplex enclosing polytope
obtained for v(3)(age).

By applying MVS enclosing polytopes , the polytopic
model (28) can be obtained with sizes J1 = 2, J2 = 3, J3 =
2. The corresponding weighting functions are shown in Fig.
2. The structure of the enclosing polytope constructed for
v(2)(p) is depicted in Fig. 3.
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m2�m3 0 1 2 3

0 ∞ ∞ 1009.4 1009.4

1 ∞ ∞ 771.8 771.8

2 ∞ ∞ 776.6 776.6

3 ∞ ∞ 776.6 776.6

Table 3. Obtained γ values

For H∞ controller design, the following filters were in-
cluded into the qLPV model: A high-pass filter to the
disturbance signal d(t) as

Wd =
s

s+ ωd
, (42)

and a low-pass filter on the reference signal r(t) written as

Wr =
1

s/ωr + 1
, (43)

where ωd = 0.3[rad/s] and ωr = 2π/120[rad/s].

Furthermore, the integrator was chosen as performance
output:

z(T ) = [0 0 . . . 0 0 0 1 0]︸ ︷︷ ︸
Cz

x(T ). (44)

4.2 Achievable performance with robust PID controller

The initial PID controller candidate was derived by naive
trial and error method

P = 0.3, (45)

I = 0.003, (46)

D = −5. (47)

To determine the overall performance with these gains,
Lyapunov function candidates of the following structure
were considered

X(p) = X ×1w
(2)(k10)×2 w(2)(k10) · · · ×m2

w(2)(k10)︸ ︷︷ ︸
m2

×m2+1w
(3)(age)×m2+2 w(3)(age) · · · ×m2+m3

w(3)(age)︸ ︷︷ ︸
m3

.

(48)

The results of the initial trial are summarized in Table
3. One can see, that m3 ≥ 2 is necessary to have a
feasible problem, but m3 = 3 does not improve the
results. Similarly, although m2 = 1 might enhance the
performance, but by further increasing its value, numerical
issues reduce the achievable performance.

Then, applying local optimisation via Nelder-Mead sim-
plex method (see Dennis and Woods (1987)) with multi-
plicities m2 = 1, m3 = 2, it leads to gains

P = 0.5139, (49)

I = 0.0024,

D = −6.7188,

the achievable performance is γ = 284.0416 that is a local
minima.

4.3 Numerical simulations

The numerical simulation was performed with parameters
presented in Table 2 controlled with PID gains (49). The
achieved results are shown in Figure 4.

Fig. 4. Numerical simulations of controller (49) with pa-
rameters given in Table 2

The Depth of Hypnosis reaches the region E < 60 in 3
minutes, and the system needs one minute to eliminate
the effect of disturbances.

5. CONCLUSION

The paper proposes a robust PID output feedback design
method for automatic propofol administration in anesthe-
sia. The suggested design approach utilizes the Affine Ten-
sor Product Model Transformation to derive the polytopic
TP model from the quasi-LPV system description. The
so obtained polytopic model represents the closed-loop
system including the controller and the dynamics of anes-
thetics. This model form is readily suitable for LMI-based
evaluation of stability and performance, which is the main
advantage of the proposed approach. As a result, within
a given parameter range - that is considered in the design
-, the stability and some performance characteristics are
mathematically proven.
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(2016). Adaptive controller using fixed point transfor-
mation for regulating propofol administration through
wavelet-based anesthetic value. In Medical Measure-
ments and Applications (MeMeA), 2016 IEEE Interna-
tional Symposium on, 1–6. IEEE.

Gahinet, P. and Apkarian, P. (1994). A linear matrix in-
equality approach to h∞ control. International journal
of robust and nonlinear control, 4(4), 421–448.

Hassibi, A., How, J., and Boyd, S. (1999). A path-
following method for solving BMI problems in control.
In American Control Conference, 1999. Proceedings of
the 1999, volume 2, 1385–1389. IEEE.

Hemmerling, T.M., Charabati, S., Zaouter, C., Minardi,
C., and Mathieu, P.A. (2010). A randomized controlled
trial demonstrates that a novel closed-loop propofol sys-
tem performs better hypnosis control than manual ad-
ministration. Canadian Journal of Anesthesia/Journal
canadien d’anesthésie, 57(8), 725–735.

Ionescu, C.M., Nascu, I., and De Keyser, R. (2014).
Lessons learned from closed loops in engineering: to-
wards a multivariable approach regulating depth of
anaesthesia. Journal of clinical monitoring and com-
puting, 28(6), 537–546.

Kuti, J. and Galambos, P. (2018). Affine tensor product
model transformation. Complexity. Accepted.

Kuti, J., Galambos, P., and Baranyi, P. (2017a). Control
analysis and synthesis through polytopic tensor product
model: a general concept. In Proc. of the Int. Fed. of
Aut. Contr. (IFAC), 6742–6747.

Kuti, J., Galambos, P., and Baranyi, P. (2017b). Gener-
alization of tensor product model transformation based
control design concept. In Proceedings of the Int. Fed.
of Automatic Contr. (IFAC), 5769–5774.

Kuti, J., Galambos, P., and Baranyi, P. (2017c). Minimal
Simplex (MVS) Polytopic Model Generation and Ma-
nipulation Methodology for TP Model Transformation.
Asian Journal of Control, 19(1), 289–301.

Lin, H.H., Beck, C., and Bloom, M. (2008). Multivariable
lpv control of anesthesia delivery during surgery. In
American Control Conference, 2008, 825–831. IEEE.

Nascu, I., Oberdieck, R., and Pistikopoulos, E.N. (2015).
Offset-free explicit hybrid model predictive control of
intravenous anaesthesia. In Systems, Man, and Cyber-
netics (SMC), 2015 IEEE International Conference on,
2475–2480. IEEE.

Nesterov, Y. and Nemirovsky, A. (1988). A general ap-
proach to polynomial-time algorithms design for convex
programming. Report, Central Economical and Mathe-
matical Institute, USSR Academy of Sciences, Moscow.

Orliaguet, G.A., Lambert, F.B., Chazot, T., Glasman,
P., Fischler, M., and Liu, N. (2015). Feasibility of
closed-loop titration of propofol and remifentanil guided
by the bispectral monitor in pediatric and adolescent
patientsa prospective randomized study. The Journal of
the American Society of Anesthesiologists, 122(4), 759–
767.

Padula, F., Ionescu, C., Latronico, N., Paltenghi, M.,
Visioli, A., and Vivacqua, G. (2015). A gain-scheduled
pid controller for propofol dosing in anesthesia. IFAC-
PapersOnLine, 48(20), 545–550.

Pilge, S., Zanner, R., Schneider, G., Blum, J., Kreuzer,
M., and Kochs, E.F. (2006). Time delay of index
calculationanalysis of cerebral state, bispectral, and
narcotrend indices. The Journal of the American Society
of Anesthesiologists, 104(3), 488–494.

Qiu, J., Feng, G., and Gao, H. (2013). Static-output-
feedback h∞ control of continuous-time T-S fuzzy affine
systems via piecewise Lyapunov functions. IEEE Trans-
actions on Fuzzy Systems, 21(2), 245–261.

Tar, J.K., Rudas, I.J., Nádai, L., Felde, I., and Csanádi,
B. (2016). Tackling complexity and missing informa-
tion in adaptive control by fixed point transformation-
based approach. In Systems, Man, and Cybernet-
ics (SMC), 2016 IEEE International Conference on,
001519–001524. IEEE.

Thevenet, J.b., Noll, D., and Apkarian, P. (2004). Non-
linear spectral SDP method for BMI-constrained prob-
lems: Applications to control design. In in Proceedings
ICINCO.

Van Heusden, K., Dumont, G.A., Soltesz, K., Petersen,
C.L., Umedaly, A., West, N., and Ansermino, J.M.
(2014). Design and clinical evaluation of robust pid
control of propofol anesthesia in children. IEEE Trans-
actions on Control Systems Technology, 22(2), 491–501.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

650


