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Abstract: In interconnected power systems, the load frequency control (LFC) is considered a hugely 
beneficial ancillary service. The goal of the LFC in an interconnected power system is to limit the 
frequency of each area within certain bounds and to maintain the tie-line power flows within some pre-
specified latitudes by balancing the power outputs of the generators so as to satisfy ever changing load 
demands. In the classical control theory, PID controller is said to be robust if it provides some specific 
gain and phase margin. In this paper, a novel methodology is proposed for the robust PID controller 
design having specific gain and phase margins for LFC in a multi-area power system. The proposed 
technique is based on stability boundary locus and PID controllers are designed for four-area power 
system having different types of turbines. The simulations are carried out using MATLAB and 
effectiveness of the proposed methodology is verified by the comparison with a recently published 
approach. 

Keywords: Load frequency control, multi-area power system, PID controller, specific gain and phase 
margin, stability boundary locus. 



1. INTRODUCTION 

For the power system to be operated satisfactorily, the 
frequency should remain almost constant. The constant 
frequency enables consistent speed of synchronous and 
induction motors. The frequency of a system depends on the 
balance of active power. Since frequency is a common 
component everywhere in the system, a deviation in the 
active power demand at one point is echoed all over the 
system by a deviation in frequency. In an interconnected 
system having more than one independent control areas, 
frequency as well as power generation inside each area has to 
be regulated so as to uphold the scheduled power 
interchange. The control of frequency and generation is 
frequently mentioned as load frequency control (LFC) 
(Kundur, 1994). 
LFC is an active area of research now-a-days. A PID 
controller design scheme based on the direct synthesis (DS) 
approach in frequency domain is presented by (Anwar & Pan, 
2015). An observer based integral sliding surface is 
developed and a sliding mode LFC (SMLFC) controller is 
suggested for minimizing the frequency changes in wind 
power systems by (Cui et al., 2017). In (Guha et al., 2016), 
LFC problem has been explained in a multi-area power 
system where PI/PID controllers are tuned using grey wolf 
optimization (GWO) approach. In (Hussein et al., 2017), 
Proportional-Integral-Observer (PI-Observer) based state 
feedback controller has been synthesized for LFC problem of 
a single area isolated power system model. (Padhan & Majhi, 

2013) estimated the power system dynamics using relay 
based identification technique and then a PID controller is 
designed for the LFC problem of single and multi-area power 
systems where PID controller gain parameters are acquired 
by enlarging the controller transfer function using Laurent 
series. (Prasad et al., 2017) tackled LFC problem in three area 
power system using nonlinear sliding mode controller (SMC) 
with matched and unmatched uncertainties and the proposed 
approach is validated on IEEE 39 bus power system. The 
neural network based integral sliding mode controller is used 
for LFC problem for nonlinear power systems with wind 
turbines by (Qian et al., 2016). A tilt-integral-derivative 
controller with filter (TIDF) is designed for LFC problem of 
multi-area power systems by (Sahu et al., 2016) in which 
TIDF controller parameters has been optimized by 
Differential Evolution (DE) algorithm. 
A two degree of freedom internal model control (IMC) filter 
is designed for the LFC problem by (Saxena & Hote, 2013) 
in which the proposed control strategy is implemented on the 
reduced order model of the single-area power system. In 
(Saxena & Hote, 2017), IMC approach is used for the 
stabilization of perturbed LFC single-area and multi-area 
power systems and the proposed technique is further 
validated on the standard IEEE 39 bus system. In (Shayeghi 
et al., 2008), LFC problem has been solved in a restructured 
power system by implementing a particle swarm optimization 
based multi-staged fuzzy (PSOMSF) controller. In (Sondhi & 
Hote, 2016), a fractional order PID controller has been 
synthesized by taking the perturbed model of the single-area 
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LFC utilizing the Kharitonov’s theorem. In (Tan, 2009; Tan, 
2010), PID controllers are tuned for LFC problem of single-
area and multi-area power systems using two-degree-of-
freedom IMC technique. A novel robust LFC methodology 
has been suggested which considers the unmodeled dynamics 
of power systems by (Tan & Xu, 2009), furthermore, a new 
arrangement is also presented to outdo the consequences of 
generation rate constraints (GRC). Discrete-time sliding 
mode controller has been designed for handling the LFC 
problem in power system control areas by (Vrdoljak et al., 
2010). 
The PID controller is widely used in various industries 
because of its simplicity and availability of various methods 
of its tuning e.g., Ziegler-Nichols method, Cohen-Coon 
method, Chien-Hrones-Reswick (CHR) method, IMC 
technique, stability boundary locus (SBL) method etc. In 
(Tan et al., 2006), a methodology for designing the 
stabilizing PI and PID controllers has been given by using the 
SBL approach, furthermore, the proposed technique is 
extended for achieving user specified gain and phase margin 
and for designing PID controllers for interval systems. 
Robust PI controller is synthesized utilizing the SBL 
technique for an unstable continuous stirred tank reactor 
(CSTR) system with parametric uncertainty by (Zavacka et 
al., 2012). One joint robotic arm has been stabilized by a PI 
controller using SBL technique for desired gain and phase 
margin by (Hote, 2016). In (Deniz et al., 2016), an integer 
order approximation procedure has been proposed for the 
numerical realization of fractional order integration and 
differentiation operations in control systems. In (Sonmez & 
Ayasun, 2016), the stabilizing PI controller parameters has 
been calculated for a single-area LFC system with time delay. 
In (Saxena & Hote, 2016), PID controllers have been 
designed for LFC issues of multi-area power systems using 
SBL approach.  
In this paper, a graphical approach of PID controller tuning 
known as stability boundary locus (SBL) approach to handle 
the LFC problem of a four-area power system is used. The 
advantage of SBL approach is that it does not involve linear 
programming to crack the inequalities and there is no need of 
sweeping over the parameters (Tan et al., 2006). The 
uniqueness of this paper is that the controllers are designed 
for specific gain margin and specific phase margin. 
The remaining paper is arranged as follows. In Section 2, the 
modeling of load frequency control is given. The proposed 
technique of PID controller design using SBL for specific 
gain and phase margin is described in Section 3. Simulation 
results are discussed in Section 4, and then finally conclusion 
is stated in Section 5. 

2. MODELING OF LOAD FREQUENCY CONTROL 

The Electric power systems are highly complex and nonlinear 
in nature. However, in normal operating conditions these 
power systems are subjected to small load changes. 
Therefore, a linearized model of the load frequency control 
(LFC) is used in interconnected power systems (Saxena & 
Hote, 2016). The i th control area of a multi-area power 
system is shown in Fig. 1. The mathematical models of 

governor,  ,G iP s , and load and machine,  ,LM iP s , are 

given by 

  ,

1

1
G i

G

P s
sT




 (1) 

  ,
1

P
LM i

P

K
P s

sT



 (2) 

where, GT , PK , and PT  are the governor time constant, 

electric system (load and machine) gain, and electric system 
time constant respectively. 

 ,T iP s  is the turbine transfer function for the i th control 

area which can be a non-reheated thermal, reheated thermal, 
or a hydro turbine. The dynamical models for the i th control 

area of non-reheated,  ,NRT iP s , reheated,  ,RT iP s , and 

hydro,  ,HT iP s  turbines are described by the transfer 

functions represented as 

  ,

1

1
NRT i

T

P s
sT




 (3) 

  
   ,

1

1 1
R

RT i
T R

scT
P s

sT sT




 
 (4) 

  ,

1

0.5 1
W

HT i
W

T s
P s

T s

 



 (5) 

where, TT , RT , and WT  are the time constants of the non-

reheated thermal turbine, reheated thermal turbine, and hydro 
turbine respectively and c  is the fraction of power generated 
in the reheat section of the reheated thermal turbine. 
The transfer function of the LFC system having non-reheated 
turbine with droop characteristics ( R ) is given by 

  
     
     

, , ,
,

, , ,1

G i NRT i LM i
NRTD i

G i NRT i LM i

P s P s P s
G s

P s P s P s R



 (6) 

which is equivalent to 

   0
, 3 2

0 1 2 3

NRTD i

b
G s

a s a s a s a


  
 (7) 

where, 0 Pb K , 0 G T Pa T T T ,  1 G T T P P Ga T T T T T T   , 

 2 G T Pa T T T   , and 3 1 PK
a

R

 
  
 

. 

The transfer function of the LFC system having non-reheated 
turbine without droop characteristics is given by 

        , , , ,NRT i G i NRT i LM iG s P s P s P s  (8) 

which is equivalent to 

   0
, 3 2

0 1 2 1
NRT i

b
G s

a s a s a s


  
 (9) 

where, 0b , 0a , 1a , and 2a  are the same as defined in (7). 

The transfer function of the LFC system having reheated 
turbine without droop characteristics is given by 

        , , , ,RT i G i RT i LM iG s P s P s P s  (10) 

which is equivalent to 

   0 1
, 4 3 2

0 1 2 3 1
RT i

n s n
G s

m s m s m s m s




   
 (11) 

where, 0 R Pn cT K , 1 Pn K , 0 G T P Rm T T T T , 

 1 P G T P G R T R P T R Gm T T T T T T T T T T T T    , 
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 2 P T P R G T G R P G T Rm T T T T T T T T T T T T      , and 

 3 P G T Rm T T T T    . 

The transfer function of the LFC system having hydro turbine 
without droop characteristics is given by 

        , , , ,HT i G i HT i LM iG s P s P s P s  (12) 

which is equivalent to 

   0 1
, 3 2

0 1 2 1
HT i

q s q
G s

p s p s p s




  
 (13) 

where, 0 P Wq K T  , 1 Pq K , 0 0.5 P G Wp T T T , 

 1 0.5 0.5P G P W G Wp T T T T T T   , and 

 2 0.5P G Wp T T T   . 

3. PID CONTROLLER DESIGN USING SBL 

Consider a load frequency control (LFC) system of an i th 
control area of a multi-area power system as shown in Fig. 1, 

in which the change in frequency  if  and net tie-line 

power interchange  ,tie iP  is regulated against the change in 

load disturbance  ,d iP . 

 ,LM iP s
 i

f s
iu 

,d iP

 ,T iP s ,G iP s

1 / R


 cG s iC s

ˆ
iB



,tie iP


iACE

 

Fig.1. Load frequency control system 

In the load frequency control of multi-area power systems, 
the frequency of each area as well as the net power 
interchange via the tie-lines should return to their nominal 
values. Therefore, a combined estimate, known as area 
control error ( ACE ) is used as the feedback signal. For the 

i th control area, the iACE  is defined as 

  ,
ˆ

i i i tie iACE B f P      (14) 

where, ˆ
iB  and if  is the frequency bias factor and the 

frequency deviation of the i th control area respectively and 

,tie iP  is the net tie-line power interchange among the i th 

control area and the other control areas. For a power system 
having M  control areas, the total tie-line power interchange 
among i th control area and other areas is given by 

      ,

1 1 1

2
M M M

tie ij ij i ij j

j j j
j i j i j i

P s T f s T f s
s



  
  

 
 

     
 
  

    (15) 

where, ijT  is the synchronizing constant between i th and 

j th control area. 

The control input for the i th control area then becomes, 

  i i iu C s ACE  (16) 

where,  iC s  is the PID controller of the i th control area, 

given by 

   i
i p d

k
C s k sk

s

 
   
 

 (17) 

where, pk , ik , and dk  are the proportional, integral and 

derivative gains of the PID controller. The PID controller 
parameters can be obtained by using the SBL approach 
having specific gain and phase margin for power system 
having different types of turbines as given in the following 
sub-sections. 

3.1 Non-reheated Turbine with Droop Characteristics 

The closed loop characteristic equation for the system is 
given by 

      ,1 0i c NRTD iC s G s G s   (18) 

   0
3 2

0 1 2 3

1 0ji
p d

k b
k sk Ae

s a s a s a s a


  

            
(19) 

where,   j
cG s Ae   is the transfer function of the gain 

phase margin tester (a virtual compensator) in which A  and 
  are the minimum specific gain and phase margin 

respectively. These specific gain and phase margins are the 
measure of the robustness of the system since the PID 

controller designed by cascading the  cG s  in the control 

loop will provide gain margin and phase margin at least equal 
to A , and   respectively. 

Substituting  cos sinje j      in (19) and then 

simplifying, results in the following 

 

 

 
 

4 3 2
0 1 2 0 0

3 0 0

0 0

cos sin

cos sin

cos sin 0

d d

p p

i i

a s a s a b Ak jb Ak s

a b Ak jb Ak s

b Ak jb Ak

 

 

 

   

  

  

 (20) 

Now, putting s j  in (20) and equating the real and 

imaginary parts of resulting equation to zero, yields 

 
   3 2

2 0 1 3

0

sin cos

p

a a a a
k

Ab

      
  (21) 

 
   3 2 4

3 1 2 0 2

0

sin cos

i d

a a a a
k k

Ab

     


  
   (22) 

For the specific gain margin ( )spA , putting spA A  and 

0   degree in (21) and (22) yields 

 
2

1 3

0
p

sp

a a
k

A b

 
  (23) 

 
4 2

20 2

0
i d

sp

a a
k k

A b

 


 
   (24) 

For the specific phase margin ( )sp , putting sp   degree 

and  1 0A dB  in (21) and (22) gives 

 
   3 2

2 0 1 3

0

sin cossp sp

p

a a a a
k

b

      
  (25) 
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   3 2 4

3 1 2 0 2

0

sin cossp sp

i d

a a a a
k k

b

     


  
  (26) 

3.2 Non-reheated Turbine without Droop Characteristics 

The transfer function of the LFC system having non-reheated 
turbine without droop characteristics is given by (9). By 
applying the procedure of section 3.1, the values of 

parameters pk  and ik  will be obtained as follows. 

For the specific gain margin ( )spA : 

 
2

1

0

1
p

sp

a
k

A b

 
  (27) 

 
4 2

20 2

0
i d

sp

a a
k k

A b

 


 
   (28) 

For the specific phase margin ( )sp  degree: 

 
   3 2

2 0 1

0

sin 1 cossp sp

p

a a a
k

b

      
  (29) 

 
   3 2 4

1 2 0 2

0

sin cossp sp

i d

a a a
k k

b

     


  
   (30) 

3.3 Reheated Turbine without Droop Characteristics 

The transfer function of the LFC system having reheated 
turbine without droop characteristics is given by (11). By 
applying the same procedure of section 3.1, the values of 

parameters pk  and ik  will be calculated as 

For the specific gain margin ( )spA : 

 
   

 

4 2
0 1 1 0 1 2 0 3 1

2 2 2
0 1

p

sp

n m n m n m n m n
k

A n n

 



   



 (31) 

   

 

6 4 2
0 0 0 2 1 1 1 3 0 2

2 2 2
0 1

i d

sp

n m n m n m n m n
k k

A n n
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



    
 


 (32) 

For the specific phase margin ( )sp =45 degree: 

 

 

   

 

 

5 4
0 0 0 1 1 0

3 2
0 2 1 1 1 2 0 3

1 3 0 1

2 2 2
0 12

p

n m n m n m

n m n m n m n m

n m n n
k

n n

 

 





   
 
    
 
   
 


 (33) 

 

 

   

 

 

6 5
0 0 1 0 0 1

4 3
0 2 1 1 0 3 1 2

2
1 3 0 1 2

2 2 2
0 12

i d

n m n m n m

n m n m n m n m

n m n n
k k

n n

 

 

 




   
 
    
 
   
  


 (34) 

3.4 Hydro Turbine without Droop Characteristics 

The transfer function of the LFC system having hydro turbine 
without droop characteristics is given by (13). By applying 
the same procedure of section 3.1, the values of parameters 

pk  and ik  will be calculated as follows. 

For the specific gain margin ( )spA : 

 
 

 

4 2
0 0 1 1 0 2 1

2 2 2
0 1

p

sp

q p q p q p q
k

A q q

 



  



 (35) 

 
   

 

4 2
0 1 1 0 1 2 0 2

2 2 2
0 1

i d

sp

q p q p q p q
k k

A q q

 




  
 


 (36) 

For the specific phase margin ( )sp =45 degree: 

 

 

   

 

4 3
0 0 0 1 1 0

2
1 1 0 2 1 2 0 1

2 2 2
0 12

p

q p q p q p

q p q p q p q q
k

q q

 

 



  
 
      


 (37) 

 

 

   

 

5 4
0 0 0 1 1 0

3 2
0 2 1 1 1 2 0 1 2

2 2 2
0 12

i d

q p q p q p

q p q p q p q q
k k

q q

 

  




   
 
       


(38) 

4. SIMULATION RESULTS 

A four area power system is considered for the controller 
design having different types of turbines. Areas 1, 2, and 3 
consist of hydro, reheated type thermal and non-reheated type 
thermal turbines respectively without droop characteristics 
whereas area 4 consists of a non-reheated type thermal 
turbine with droop characteristics. The stability boundary 

locus (SBL), is a two dimensional plot of pk  versus ik  for a 

fixed value of dk  as the angular frequency ( ) varies from 

zero to infinity (Tan et al., 2006). The SBL and the line 

0ik   divides the ( pk , ik ) plane into stable and unstable 

regions (Sonmez & Ayasun, 2016). 

The (SBL) for the specific gain margin, 12 (3.9811)spA dB , 

and specific phase margin, 45deg.sp  , are plotted for all 

the four control areas represented in Fig. 2. Using the SBL, 

the value of PID controller gains pk  and ik  are determined 

for a fixed value of dk . In Fig. 2, black and red curves 

represent the SBL corresponding to the specific gain margin 

and specific phase margin respectively. The values of pk  and 

ik  are chosen from the common area bounded by the black 

and red curves and the 0ik   axis for a fixed value of dk  to 

get the stabilizing PID controller. For the simulation, the 
values of the governor, turbines, and the electric system 
parameters are taken as follows (Saxena & Hote, 2016). For 
the control area 1, 
 1, 6, 0.2, 4P P G WK T T T     (39) 

For the control areas 2, 3, and 4, 
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120, 20, 0.08, 0.3,

4.2, 2.4, 0.35

P P G T

R

K T T T

T R c

   

  
 (40) 

The frequency bias factor ( ˆ
iB ), and synchronizing constants 

( ijT ) have been taken as follows. 

 ˆ 0.425; ( 1,2,3,4)iB i   (41) 

 
12 21 23 32 42 14 24

34 41 13 31 43

0.06,

0.07, 0.08

T T T T T T T

T T T T T

     

     
 (42) 
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Fig. 2 Stability boundary locus of all control areas 

For the control areas 1, 2, 3, and 4, the PID controller gain 

parameters  ,p ik k  are selected from Fig. 2 and are given in 

(43)-(46) respectively. The dk  is kept fixed for drawing each 

of the four control areas. 

 0.3; 0.06; 0.8p i dk k k    (43) 

 1.0; 0.5; 1.0p i dk k k    (44) 

 0.3; 0.05; 0.5p i dk k k    (45) 

 0.05; 0.1; 1.5p i dk k k    (46) 

The Bode plots are obtained from the open loop transfer 

functions consisting of the above PID controllers  iC s  and 

the plant transfer functions  iG s  of the corresponding 

control areas. The achieved gain margin and phase margin 
from these plots are greater than the specific gain margin, 

12 (3.9811)spA dB , and specific phase margin, 

45degsp   as given in (47-50). Therefore, the PID 

controllers obtained by the proposed scheme provide robust 
stability to the multi-area power system. 
 1: 12.3 ; 67.5degArea A dB     (47) 

 2 : ; 82.8degArea A Inf dB     (48) 

 3 : ; 77.1degArea A Inf dB     (49) 

 4 : ; 45.7degArea A Inf dB     (50) 

Let the control areas 1, 2, 3, and 4 be subjected to a step load 

disturbance  ,d iP  of 0.01 p. u. MW at time instances 

t =10, 300, 700, and 1100 seconds respectively. Fig. 3 
depicts the deviation in frequency in the four control areas in 
which the frequency deviation ( if ) ultimately returns to 

zero in a very short time. In these figures, the proposed 
approach in which PID controllers are designed using SBL 
for specific gain and phase margin is compared with recently 
developed PID control scheme for four-area power system 
(Saxena & Hote, 2016) using SBL without specific gain and 
phase margin. In control areas 1, 2, and 3, the oscillations are 
less in the proposed scheme while in control area 4, the 
oscillations are a little more. The settling time in control areas 
2, and 4 is lesser in the proposed scheme whereas it is 
comparable in the control areas 1, and 3. 
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Fig. 3 Frequency deviations in all control areas 
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Fig. 4 Tie-line power deviations in all control areas 
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The net tie-line power deviations, ,tie iP , in the four control 

areas is illustrated in Fig. 4, which shows that tie-line power 
deviations return to zero in a short duration in all the control 
areas. Further, a comparison is made with the same 
methodology as in Fig. 3, and the obtained performance is 
quite satisfactory. Because of the lack of literature available 
on the LFC having the same set of turbines as in the proposed 
method, the comparison is limited to only one technique. 

5. CONCLUSION 

In this paper, a novel robust PID controller design technique 
is proposed for the load frequency control problem of four-
area power system having different types of turbines. The 
PID controller gain parameters are determined by utilizing 
the stability boundary locus methodology. The unique 
characteristic of the proposed approach is that the SBL are 
obtained for specific gain and phase margin which ensures 
robustness to the system. Simulation results illustrate that the 
proposed technique performs better than the recently reported 
approach. In future, the proposed method can be applied for 
LFC problem of a perturbed and nonlinear power system 
model. 
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