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Abstract: The control of slip in a belt Continuously Variable Transmission (CVT) has been
the subject of many research papers. Optimal control of the belt CVT is of major importance
for the efficiency as demonstrated in literature. The challenge in optimizing that efficiency is in
the reduction of the necessary clamping forces while the stability of the variable transmission
is maintained. Although these problems have already been tackled to a certain extent, mostly
fairly complex controllers are proposed. The goal of this paper is to propose a straightforward
though effective method to control slip. The main idea of the paper is to use linearized equations
of the slip dynamics to update the controller parameters in function of the operating point. This
approach allows to reduce the highly nonlinear system to a first order transfer function which
is easily controlled with a PI controller. Results based on extensive simulations show that the
controller is robust against torque disturbances and speed ratio variations.
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1. INTRODUCTION

Manufacturers of advanced drive trains specialized in the
automotive industry encounter an ever growing pressure
due to increasingly stringent regulation concerning fuel
consumption and emissions. As a result, they are forced to
innovate and one of those innovations is the Continuously
Variable Transmission (CVT). In a CVT the speed ratio
can be varied continuously between two finite values.

Many types of CVT are discussed in literature, e.g.
toroidal CVT (Carbone et al. (2004)), belt CVT (Car-
bone et al. (2007)), Milner CVT (Akehurst et al. (2007)),
hydraulic CVT (Kempermann (2007)), wheel type CVT
(Chen et al. (2017)), . . . However, the belt CVT is the most
commonly used CVT, among all, in automotive applica-
tions (Srivastava and Haque (2009)).

The ratio variation abilities of the belt CVT are used in a
vehicle to enable the Internal Combustion Engine (ICE) to
operate in its most optimal operating point, which results
in lower fuel consumption as demonstrated by Carbone
et al. (2001) and Van der Sluis et al. (2006). Despite the
potential of the technology, a significant part of the fuel
savings is lost due to the low efficiency of the variable
transmission.

The main reason for the CVTs low efficiency are the
high clamping forces which are used to transfer torque.
These clamping forces, delivered by hydraulic cylinders,
are typically chosen 30% too high to ensure stable oper-

ation by preventing gross slip at all times (Bonsen et al.
(2005b)). This urge for stability will increase the losses in
the hydraulic circuit significantly. Another negative side-
effect of this control strategy is increased wear and thus
reduced life span of the transmission.

The efficiency can be increased by lowering the clamping
forces but than a robust slip controller is necessary. Bonsen
et al. (2005b) elaborated such a controller based on the slip
dynamics of the CVT and the PID design methodology
described by Panagopoulos et al. (2002). The results show
a substantial increase in the efficiency of the drive train
while slip is still adequately controlled.

The objective of this paper is to demonstrate that the
highly non linear slip dynamics can be reduced to a first
order system. Therefore no complex control design rules,
as used in Bonsen et al. (2005b), are necessary.

This paper is structured as follows. Section 2 shortly dis-
cusses the operating principle of the belt CVT. Thereafter
the slip dynamics are derived and linearized in section 3.
Section 4 discusses the design and implementation of the
controllers while the results are presented in section 5.
Finally, in Section 6 the conclusions of the research are
formulated.

2. OPERATING PRINCIPLE

The belt CVT consists of 2 pulleys which are composed
of a fixed half and a movable half (sheave), see Fig. 1.
By adapting the position of the movable sheaves, the belt
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runs on another radius and as a result the speed ratio τs
is altered. Movement of the sheaves and thus control of
the speed ratio is done via 2 hydraulic cylinders which
deliver a force on the primary Fp and secondary Fs pulley.
Consequently the belt CVT is a Multiple Input Multiple
Output (MIMO) system: the forces (input) will not only
be used to control the speed ratio (output) but also to
control the slip (output) as mentioned in the introduction.
Moreover the clamping force on the secondary pulley is
used for slip control purposes while the ratio of both
clamping forces is used to control the speed ratio as
demonstrated by Carbone et al. (2007).

3. LINEARIZED SLIP DYNAMICS

As demonstrated by Bonsen et al. (2005b), it is vital to
model the slip dynamics in order to design a proper slip
controller. The model is based on Fig. 1 in which TICE and
Tload are respectively the engine torque and load torque,
the inertia of both pulleys is denoted by Jp and Js and the
speed by ωp and ωs. Subscript p stands for the primary side
while subscript s stands for the secondary side.

Besides engine TICE and load torque Tload, Tp and Ts are
mentioned on Fig. 1. These variables represent the torque
produced via friction and are calculated as follows (Bonsen
et al. (2005b)):

Tp,s =
2Fsµ (ν)Rp,s

cosβ
(1)

with β the half cone angle of the pulleys, µ the friction
coefficient which depends on ν the slip and Rp,s the
running radii of the belt.

TICETp

TsTload

ωp

ωs

Driver pulley

Driven pulley

Jp

Js

Fp

Fs

2β

Rp

Rs

Fig. 1. Belt CVT

When the speed ratio is varied or there is any load
disturbance or variation, slip variations will occur. Slip
ν is defined by the ratio of the actual speed ratio τs and
the theoretical or geometrical speed ratio τt, see eq. (2).
In eq. (2), the actual speed ratio τs is calculated as the
ratio of the secondary ωs and primary speed ωp while the
theoretical speed ratio τt is defined by the ratio of the
primary Rp and secondary radius Rs.

ν =
−τs
τt

+ 1 =

ωs

ωp

Rp

Rs

+ 1 (2)

As it is the objective to control the variations in slip, the
derivative is considered:

ν̇ =
τ̇tτs − τ̇sτt

τ2t
(3)

Which can be rewritten as:

ν̇ =
τ̇t
ωs

ωp
− ω̇sωp−ω̇pωs

ω2
p

τt

τ2t
(4)

The derivatives of the primary ω̇p and secondary speed ω̇s
in eq. (4) can be replaced by respectively eq. (5) and eq.
(6).

ω̇p =
TICE − Tp

Jp
(5)

ω̇s =
Ts − Tload

Js
(6)

Considering eq. (5) and (6), eq. (4) can be redrafted in
terms of torque and inertia:

ν̇ =
τ̇tωs
τ2t ωp

− Ts − Tload
ωpJsτt

+
(TICE − Tp) (1 − ν)

ωpJp
(7)

By using eq. (1), the equation describing the slip dynamics
can be finalized:

ν̇ =
τ̇tωs
τ2t ωp

+
1

ωp

(
− 2FsµRs
Js cosβτt

+
Tload
Jsτt

)
+

1 − ν

ωp

(
−2FsµRsτt

Jp cosβ
+
TICE
Jp

) (8)

The variation in slip is thus a function of 10 variables:

ν̇ = f (ν, τ̇t, τt, ωs, ωp, Fs, Rs, TICE , Tload, µ) (9)

Of these variables, only the secondary clamping force
Fs can be used to actively control the slip. All other
variables are controlled at a higher level by for example
the energy management system which selects optimal
operating points (TICE , ωp, . . . ) or are induced by the
considered load profile (Tload, ωs, . . . ). Therefore, these
variables are considered as disturbances D.

Notice that the primary clamping force Fp does not appear
in the equation. However, this does not mean that Fp has
no impact on the slip. As shortly mentioned in section 2,
the speed ratio τt of the CVT depends on the ratio of
the clamping forces. Consequently, an increase of Fp will
lead to a variation in speed ratio τt. As the speed ratio
has an impact on the slip dynamics (see eq. (8)), Fs will
also have to change to maintain the desired slip value. The
secondary clamping force has thus an indirect effect on the
slip.

In the following paragraphs, the slip dynamics are lin-
earized for control purposes. However, the model of the
CVT which is used to test the behavior of the elaborated
controller, is not simplified to any extend. If eq. (8) is lin-
earized, ignoring the variables considered as disturbances
D, the following equation is found:

ν̇ = Dτ̇t +Dτt +Dωs +Dωp +
∂f

∂Fs

∣∣∣
∗

(Fs − F ∗
s ) +DRs

+DTload
+DTICE

+
∂f

∂ν

∣∣∣
∗

(ν − ν∗) +Dµ

(10)

ν̇ = D +
∂f

∂Fs

∣∣∣
∗

(Fs − F ∗
s ) +NRs

+
∂f

∂ν

∣∣∣
∗

(ν − ν∗) (11)

Which can be rewritten as:

ν̇ = D − ∂f

∂Fs

∣∣∣
∗
F ∗
s − ∂f

∂ν

∣∣∣
∗
ν∗︸ ︷︷ ︸

K

+
∂f

∂Fs

∣∣∣
∗︸ ︷︷ ︸

L

Fs +
∂f

∂ν

∣∣∣
∗︸ ︷︷ ︸

M

ν (12)
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In which the partial derivative of Fs equals:

∂f

∂Fs

∣∣∣
∗

= − 2µRs
ωpJs cosβτt

− (1 − ν) 2µRsτt
ωpJp cosβ

= L (13)

And the partial derivative of ν:

∂f

∂ν

∣∣∣
∗

=
2FsµRsτt
ωpJp cosβ

− TICE
ωpJp

= M (14)

The next step is to take the Laplace of eq. (12):

ν(s)s = K + LFs(s) +Mν(s) (15)

Note that the disturbance term has been removed as it
has no impact on the actual linearized transfer function.
The term K can also be removed as it is merely an offset
which can be ignored for control purposes. Therefore, the
following transfer function is found:

ν(s)

Fs(s)
=

−L
M

−1
M s+ 1

(16)

This means that the complex nonlinear behavior of the slip
dynamics is now converted to a first order system which
can be easily controlled.

4. CONTROLLER DESIGN AND IMPLEMENTATION

4.1 Control architecture

The belt CVT is a MIMO system as highlighted in section
2. To decouple the control loop of the ratio and the slip the
scheme presented in Fig. 2 is used. In this scheme, the ratio
controller yields the ratio of the forces on the primary and
secondary pulley while the slip controller yields the force
on the secondary pulley.

Slip
Controller-

ν∗

ν

Ratio
Controller-

τ∗

τs

F ∗
s

F ∗
p

F∗
p

F∗
s ×

Fig. 2. Control architecture

4.2 Ratio controller

As control algorithm, a PI controller is chosen, which has
been tuned based on the work of Simons et al. (2008). A
differential action is not necessary as the shifting process
exhibits a sufficient amount of damping (Simons et al.
(2008)). The implementation of this PI controller with
fixed Kp and Ti is rather trivial and is therefore not further
discussed.

4.3 Slip controller

Based on section 3 it is known that the slip dynamics
can be described as a first order system. Therefore a PI
controller should result in acceptable slip behavior. The
transfer function of a PI controller can be written as:

TFPI = Kp

(
Tis+ 1

Tis

)
(17)

with the proportional term Kp and the integral term Ti.
The integral term should be equal to the time constant of
the first order system depicted by eq. (16). If the system
pole is canceled by the controller zero, the dynamical
behavior can be uniquely defined by the control parameter
Kp. Ti is therefore equal to:

Ti =
−1

M
(18)

Note that this can only be done if the pole is in the left
half plane (see Fig. 3 a)) which means that M needs to
be negative. This will be the case if TICE > Tsτt which is
valid for almost all operating conditions. Only when the
ICE is turned off while the belt is still rotating this method
becomes erroneous. However this is an unlikely event as
the ICE is only turned off when the vehicle is close to a
standstill or is at standstill. In that case, slip control is no
longer necessary. To calculate the proportional term, the
closed loop system is taken into account:

TFCL =
−L
M Kp

Tis+ −L
M Kp

(19)

Which means that the closed loop pole defining the closed
loop dynamics can be found at:

s =
L
MKp

Ti
(20)

By which the proportional gain of the controller can be
defined with one degree of freedom α:

Kp =
αTi
L
M

=
−α
L

(21)

The value α defines the position of the closed loop pool
as demonstrated in Fig. 3 (red line) and is related to the
ability to handle disturbances as will be demonstrated in
section 5. The black cross resembles the system pole while
the blue cross and circle resemble respectively the pole and
zero of the PI controller. Only case a) is discussed in this
paper because of the previously mentioned reason.

Fs

TICE

ωp

Rs

τt

µ

ν

β

Js

Jp

L

M

a) b)

C
α

C

C

C

F ∗
s
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ωp

Rs

τ∗s

µ

ν∗

β

Js

Jp

L

M

C
α

C

C

C

C

C

C

a) b)

Fig. 3. a) Root locus for the case in which TICE > Tsτt:
left half plane system pole. b) Root locus for the case
in which TICE < Tsτt: right half plane system pole.

The implementation of the PI controller comes thus down
to the determination of parameters L and M . Parameter
L is calculated based on eq. (13) while parameter M can
be determined with eq. (15).

The many parameters in those equations define the oper-
ating point based on which the linearization is done. As all
inputs of eq. (13) and eq. (15) are constantly varying, the
equations need to be solved repeatedly during simulation
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to feed the PI controller with the optimal Kp and Ti at all
times. However, the computational effort of solving these
static relations is negligible.

Another complexity of the determination of L andM is the
number of parameters which need to be obtained to solve
the equations, see Fig. 4 a). This is of course not an issue
in simulation but when tested on a test bench this becomes
important. To counter this concern, some simplifications
are proposed to reduce the number of variables.

Fs

TICE

ωp

Rs

τt

µ

ν

β

Js
Jp

L

M

a) b)

C
α

C

C

C

F ∗
s

TICE

ωp

Rs

τ∗s

µ

ν∗
β

Js
Jp

L

M

C
α

C

C

C

C

C

C

Fig. 4. a) Overview on the inputs to calculate L and M . b)
Overview on the strictly necessary inputs to calculate
L and M . The value C stands for a constant.

As constant slip is expected due to proper control, the
friction coefficient µ will be fairly stable. The first adap-
tation is thus to consider a fixed friction coefficient µ.
Furthermore, on the hypothesis of proper slip control,
the slip is presumed equal to the setpoint. Based on the
assumption of proper slip control and low values for slip it
is also possible to equalize the theoretical and the actual
speed ratio (see eq. (2)). Combined with an appropriate
ratio controller it is possible to obtain τt and the running
radii Rp,s directly from the speed ratio setpoint. The last
simplification is to use the output of the slip controller to
estimate the force on the secondary pulley Fs instead of
measuring the clamping force.

Due to these changes, only 2 measurements remain: speed
of the primary pulley ωp and the torque on the primary
pulley TICE . Of these variables speed is easily measured
and torque of the ICE could be estimated based on engine
characteristics (Zweiri et al. (2006)) to avoid an expensive
torque sensor.

5. RESULTS

5.1 Impact of the parameter α

As mentioned in section 4.3, the proportional gain Kp was
defined with one degree of freedom left. This allows the
control engineer to test the behavior of the controlled sys-
tem on torque disturbances. Fig. 5 shows the response for
varying α values. At t equal to 2.5s there is a stepwise load
variation of 25Nm which is in correspondence with the test
done by Bonsen et al. (2005a). In all cases, the controller
is able to stabilize the slip, however the larger the value
for α, the more immune the controlled system becomes

for the specific load variation. Furthermore it is possible
to conclude that there is no further improvement of the
response of the controller for α values larger than 250.
Therefore, the remaining simulations have been performed
with α equal to 250.

2.45 2.5 2.55 2.6 2.65 2.7
Time [s]

2

3

4

5

6

7

8

ν
[%

]

α = 20
α = 100
α = 250
α = 500

Fig. 5. Slip variation due to a stepwise load variation of
25Nm at t=2.5s for varying values of α.

5.2 Varying load at constant speed ratio

In the previous subsection, the impact of one specific load
disturbance is highlighted to analyze the impact of the
factor α. In this subsection the results are discussed of
both positive and negative load disturbances of varying
magnitude. Fig. 6 shows that the magnitude of the load
variation has no significant impact on the settling time of
the controller. Only the overshoot increases for increasing
load. Fig. 6 also shows that not only the force on the
secondary pulley changes due to the load variations but
also the force on the primary pulley. The reason for this
effect is that the speed ratio of the CVT is defined by the
ratio of both forces on the pulleys as already mentioned in
subsection 4.2. As the secondary force needs to be changed
to maintain a constant value for the slip, the primary force
needs to change as well to maintain the desired, constant,
value for the speed ratio.

5.3 Varying speed ratio at constant load

According to eq. (10), the speed ratio could also be a
disturbance for the slip controller. However, Fig. 7 shows
that the proposed control architecture has no difficulties
with sustaining constant slip values while the speed ratio
is following a desired curve. Note that there are 2 peaks in
the profile of the secondary clamping force. By increasing
the force on the secondary clamping force the torque
Ts developed by that pulley increases. As a result the
secondary pulley is accelerated by which the imposed
speed ratio τ∗s value is maintained.

5.4 Varying speed ratio and load

Fig 6 and 7 clearly showed the interaction between the slip
and ratio controller but in those cases speed ratio or load
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Fig. 6. Slip ν and clamping forces Fp,s for load torque Tload
variations in function of time at constant speed ratio
τs of 1.
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Fig. 7. Slip ν, clamping forces Fp,s and speed ratio τs in
function of time for a constant load torque Tload of
30Nm.

torque were constant. Fig. 8 shows that the controllers
can also handle simultaneous variations of load torque
and speed ratio. As in Fig. 6, a small increase in slip is
noticeable due to the increased load torque. The impact
due to ratio variation is non-existent.

Fig. 9 shows the corresponding clamping forces which show
to be in coherence with the previously presented data.
Again due to ratio variation, a peak in the clamping force
profile of the primary pulley appears in order to increase
the torque on that pulley. After 3s the clamping forces
increase due to varying load torque similar to the results
shown in Fig. 6.

Besides the corresponding clamping forces, it is also useful
to plot Kp and Ti for this simulation. Fig. 10 shows that,
for this case, Kp starts varying when the speed ratio
changes. Moreover, the impact of the stepwise load torque
variation is not visible in the value for Kp. This makes
sense as Kp is only a function of α and L (see eq. (21))
which do not depend on the load torque Tload. This is in

contrast with the integral term Ti where a steep decrease is
noticeable after 3s. Furthermore Ti also varies during ratio
variation. This can also be clarified as Ti depends uniquely
on M (see eq. (18)) which is a function of, among others,
torque and speed ratio. Fig. 10 thus clearly demonstrates
the dependency of the controller settings on the operating
conditions.
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Fig. 8. Slip ν, speed ratio τs and load torque Tload in
function of time.
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Fig. 9. Corresponding clamping forces Fp,s for Fig. 8 in
function of time.

6. CONCLUSION

In this paper a method is elaborated to design a PI
controller for a slip controlled belt CVT. In contrast to
earlier literature, this paper proposes a straightforward
adaptive controller without losing robustness. To this end
the complex nonlinear slip dynamics were simplified to
a first order transfer function which enabled the use of
basic control design rules. The results which were obtained
based on a detailed model, show that the slip controller
can handle torque disturbances and is immune for speed
ratio variations. These results justify the simplifications
which were made in the controller design. Based on these
promising results, measurements on a test bench can be
done to see wheter these simplifications still hold.
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Fig. 10. Corresponding controller parameters Kp and Ti
for Fig. 8 in function of time.
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