
Experimental Study of Nonlinear PID
Controllers in an Air Levitation System

J. Chacón ∗ H. Vargas ∗∗ S. Dormido ∗ J. Sánchez ∗

∗ Universidad Nacional de Educación a Distancia, Madrid 28040,
Spain (e-mail: jchacon@bec.uned.es).

∗∗ Pontificia Universidad Católica de Valparáıso, Chile.

Abstract: This paper presents an experimental study of different non-linear PI controllers using
an academic platform based on an Air Levitation System. The comparison is based on common
performance indexes, computed over the data extracted from the experiments. The results verify
that, in addition to the PID controller in its classic form, several non-linear modifications can be
considered to cope with different control needs, such as optimization on the number of control
actions, or go beyond the restrictions that linearity impose on the performance that can be
obtained by a PID controller.

Keywords: PID, Control Engineering, Teaching, Experimental Study, Non-linear

1. INTRODUCTION

The most known controller is, no doubt, the PID. One
of the reasons of this popularity is that its principles are
conceptually simple to understand: it is based on reacting
to the control error, its past history and its predicted
behavior. Of course, this simple idea allows for many
variations that can cope with a wide range of systems and
situations. Every day, many control and instruments engi-
neers and operators have to use PID controllers (Åström
and Hägglund, 2005). Ideally, a controller not only must
comply its principal objective, obviously to meet the con-
trol specifications, but also it is important that the people
responsible of assess the performance of the controller have
a basic understanding and the ability to setup and give
correct maintenance of the control loop.

Appart from being a simple controller in comparison to
other most sophisticated structures, like GPC or IMC,
there are some important practical details of implementa-
tion, such as the reset windup, noise filtering or bumpless
transfer between manual and automatic mode, that can
dramatically impact the performance of the control loop
if neglected or not correctly cope with.

In spite of the pervasivity of PID controllers, and their
ability to cope satisfactorily with many kind of processes,
the PID controllers are linear systems and, as such, its
linearity impose restrictions on their achievable perfor-
mance. To expand the applicability of the PID control,
many authors have proposed modifications that introduce
different types of non-linearities (Årzén, 1999). In fact,
the solution of the aforementioned practical problems,
such as the antiwindup mechanism, introduce a non linear
behavior. Many examples of non linear PID control exist
in literature (Årzén, 1999; Lehmann and Johansson, 2012;
Vasyutinskyy and Kabitzsch, 2006; Sánchez et al., 2011).

As main purpose of this paper, four different control
strategies are explored in this paper, discussing how they

work, providing an implementation and comparing their
performance in an academic plant.

The experimental platform is based on an Air Levitation
System (Chacón et al., 2017). The control objective of this
system is to lift an object without mechanical support and
maintain it at a desired height level. One of the interesting
features of this academic platform is the flexibility to
implement different control strategies, which is invaluable
from a pedagogic perspective. In the platform, there is
a dedicated Arduino board running the controller, and
easily extensible to develop and test new control laws,
without worrying about other implementation details, like
the datalogging, communication protocols, etc.

In this paper, several control strategies are implemented,
tested and compared in an academic plant. The develop-
ment platform allows for rapid prototyping and evaluation
of control laws, which can be implemented in Processing,
a well-known programming language created for Arduino
boards. The comparison is based on common performance
indexes such as IAE or ITAE. The aim of the study is
twofold: on the one hand, to evaluate in a real plant
several implementations of the different PID controllers
allows to have a better understanding of their capabili-
ties, advantages and disadvantages. On the other hand,
to demonstrate the value of the Air Levitation System
as a pedagogical instrument to teach control engineering
concepts, with a real-world approach which serves as a
bridge between the control theory and the practical that
appears in practice, such as erratic sensors behaviour,
actuator wearout, communication delays or losses, etc.

The structure of the paper is as follows. Section 2 describes
the Air Levitation System which is subject of study.
Section 3 discusses the control strategies which are being
compared, and provides some comments on the practical
implementation of the controllers. Section 4 presents and
analyzes the experimental results. Finally, Section 5 gives
the conclusion and future lines of work.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

ThI1S.3

© 2018 International Federation of Automatic Control 304

(a) (b)

Fig. 1. (a) The Air Levitation System, and (b) diagram of
forces.

2. THE AIR LEVITATION SYSTEM PLATFORM

The system consist of a tube with an object inside (Fig-
ure 1(a)), which must be lifted without mechanical support
to a desired level (Figure 1(b). To this purpose, there is a
fan forcing an air flow inside the tube to control the object
movement, and an infrared sensor to measure the position.
In the following lines the experimental system is described.
A more detailed description can be consulted in (Chacón
et al., 2017).

2.1 Model

The mathematical model of the system is studied in other
previous works Timmerman and van der Weelea (1999);
Escaño et al. (2006); Jernigan et al. (2009). A simplified
mathematical model of the system can be obtained from a
balance of forces: considering the upwards effect of the air
flow, and the downwards effect of gravity (the only forces
acting on the levitating object) the dynamic equation is
(Chacón et al. (2017)):

z̈ = g · ((vw − ż
veq

)2 − 1). (1)

where z is the vertical posisiton of the object, vw is the
wind speed, and veq is the wind speed at the equilibrium
point. Given an operating point the system dynamics (not
considering the fan) can be linearized and the resulting
transfer function is a first order system plus an integrator:
∆z(s)/∆v(s) = a/(s(s+ a)), where a = 2g/veq, and (∆z,
∆v) are, respectively, the increment of the position and
wind speed, near the equilibrium point.

2.2 Identification

Considering that the fan can be modeled as a first order
process, the transfer function between the input voltage
and the wind speed is represented as: v(s)/u(s) = kv/(τs+
1), where v is the wind speed, u is the input voltage,
kv is the gain that relates the input voltage to the wind
speed at steady state, and τ is the fan time constant that
models the impossibility of the fan to change the speed
instantaneously. Assuming the system is well described by
the linearized model, the process transfer function is:

z(s) =
1

s

akv
(s+ a)(τs+ 1)

. (2)

0 2 4 6 8 10 12 14 16 18

time (s)

4

6

8

10

12

14

16

18

20

22

24

b
a
ll

h
e
ig

h
t
(s

)

setpoint

prbs 1

prbs 2

prbs 3

Fig. 2. An excerpt of the response to a PRBS input of
amplitude 10cm applied to the setpoint.

Since the model has a pure integrator, the system is
unstable in open loop, so a step input is likely to provoke
the ball to either fall to the ground or to reach the
upper end of the tube. To extract experimental data
for identification, after some practical problems with the
preliminary experiments, it was decided to identify the
closed loop system. The procedure is as follows:

• The operating point is set to h0 = 15cm.
• The system is identified in closed loop, using a pro-

portional controller with unit gain (u = r − h).
• Setting a period of Ts = 100ms, the system is excited

with a signal and 1024 samples are registered. Two
kind of signals are applied:
(1) Step (10cm).
(2) Pseudo-random bynary signal (PRBS, ±5cm).

With a proportional controller, the closed loop has a set-
tling time of around 8 seconds, and without steady error
due to the pole at the origin. These experiments were car-
ried out as a preliminary approach to obtain an insight on
the system parameters such as gain, time constant, etc. in
order to design an experience that optimizes the extraction
of information about the system. The amplitude (5 cm) of
the PRBS signal is a tradeoff between signal/noise ratio
and linearity. It must be noted that outside the range (10
cm, 30 cm), the ball approximates the ends of the tube, and
both the system dynamics and the sensor presents non-
linearities, which affects the quality of the identification
data. Figure 2 shows and excerpt of the PRBS signal and
the corresponding system response. The experimental data
was stored into the single-board computer connected to the
plant. Then it was retrieved and preprocessed to generate
Matlab formatted data, and Matlab with the System Iden-
tification Toolbox helped with the input signal generation
and the identification of the model. These experiments
provided enough information to obtain a good enough ex-
perimental model, and the parameters of the model based
on physical principles were tuned to fit the experimental
data. In spite of that, the model which obtained best fit
to estimation data was an auto-regressive with external
input (ARX), with polinomial orders of na = 4, nb = 4
and nk = 3:

A(z)y(t) = B(z)u(t) + e(t), (3)

where:

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

305

A(z) = 1− 0.714z−1 − 0.7218z−2 + 0.07565z−3 + 0.3468z−4,

B(z) = 2.053z−3 + 1.838z−4 + 1.379z−5 + 1.292z−6.

Though the model was identified at an operating point
h0 = 15, it was also validated with experimental data for
h0 = 10 and h0 = 20. The transfer function corresponding
to the discrete process and to the disturbance can be
written as:

G(z) =
2.053z−3 + 1.838z−2 + 1.379z−1 + 1.292

z−4 − 0.714z−3 − 0.7218z−2 + 0.07565z−1 + 0.3468
, (4)

H(z) =
1

z−4 − 0.714z−3 − 0.7218z−2 + 0.07565z−1 + 0.3468
, (5)

where e(t) is a white noise with variance σ = 0.2798. The
identified model, focused on prediction, obtained an 85%
of fit to estimation data, which is reasonably considering
the tradeoff decisions in the design of the system.

2.3 Implementing the controller

The controller is deployed into an Arduino Nano. The soft-
ware platform provides a template to implement generic
controllers, so anyone who is familiarized with Processing
can easily extend the system to experiment with new
control laws. The communication and other implemen-
tation details are encapsulated into the provided code.
The class Controller can be extended to implement the
control law. In particular, the method update is invoked
with a fixed period T = 100ms. This period is imposed
by a physical limitation of the sensor, in order to provide
stable measurements. The period of the controller can be
chosen to a different value, though the measurement will
be updated only every T seconds.

3. CONTROL STRATEGIES

Four control strategies have been implemented and tested,
namely:

• PI: A classical PI controller.
• PI-CI: A PI controller with a Clegg’s integrator

(Baños and Barreiro, 2012).
• PI2D: An event-based PI controller with feedforward

(Sánchez et al., 2011).
• Robust Adaptive Hybrid PI (Scola et al., 2017).

The approach chosen in this paper to compare the perfor-
mance of the different controllers is based on integral crite-
ria. The following ones are commonly used to express the
performance of a control system (Åström and Hägglund
(2005)):

• IE =
∫ t

0
e(t)dt

• IAE =
∫ t

0
|e(t)|dt

• ITAE =
∫ t

0
t|e(t)|dt

• ISE =
∫ t

0
e2(t)dt

• QE =
∫ t

0
(e2(t) + ρu2(t))dt

To compare the performance of the different strategies, the
closed loop is excited with step changes in the reference
and external disturbances. The experiment are repeated
several times for each implemented strategy and then
the performance indexes are computed and averaged. To
introduce an external disturbance, the plant provides a
servo-mechanism that can modify the input air flow in a
repeatable manner.

3.1 PI

The first one is a PI controller in parallel form C(s) = (kp+
ki

s)e(s). This implementation is provided as a reference for
the comparison. To cope with practical problems such as
the saturation of the actuator, the controller implemen-
tation incorporate an antiwindup mechanism, based on a
conditional integration. The code is shown in Figure 3(a),
Listing 1.

3.2 PI-CI

The second implementation is a PI controller with a
Clegg’s integrator (PI-CI). The Clegg’s integrator is a
special kind of integrator which is based on resetting the
state to zero whenever the input crosses by zero. It was
shown by Clegg that the integrator with reset introduces
a phase lag of −38.1◦, as oppossed to the −90◦ of the
linear integrator. The PI-CI consist of a PI controller with
a Clegg’s integrator connected in parallel with the linear
integrator, and a reset coefficient ρ ∈ [0, 1) to weight
the influence of each one. That means that for ρ = 0
the controller is equivalent to a PI controller, and ρ = 1
corresponds to a PI with a pure Clegg’s integrator. This
latter case is not recommended though: the effect of the
integral term is lost and the resultant controller is not
able to reject disturbances in steady state. With regard
to the implementation in Arduino, the code is shown in
Figure 3(b), Listing 2.

3.3 PI2D

The third implementation is an event-based PI with feed-
forward Sánchez et al. (2011). This controller consist of
two parts: the feedforward block respond to changes in
the setpoint, and generates a two-state control action that
moves the output to the desired value, in absence of distur-
bances and assuming a perfect model of the system. The
feedback block consist of a PI controller which has been
modified to use a send-on-delta sampling strategy both
in the proportional and integrated terms. To compute the
feedforward action, in Sánchez et al. (2011) the process
is modeled as a First Order plus Time Delay (FOTD),
yielding the two values of the control signal. However,
since the model considered here contains a pure integrator,
the second value is fixed to zero, and the first one can be
modified as an extra degree of freedom. The feedback block
is characterized by two params, δP and δI , which are the
proportional and integral event thresholds, respectively. A
new event is triggered every time the difference between
the current value of the signal (e(t) or Ie(t)) and the
value at the last event is greater than the threshold, i.e.
|e(t) − e(tk)| > δP for the proportional term and |Ie(t) −
Ie(tk)| > δI for the integral term.

3.4 ROBUST ADAPTIVE HYBRID PI

The last implemented controller is described in Scola et al.
(2017). It is a PI controller which resets its integrator’s
state if under the temporal regularization and the state
vector of the closed loop belong to the jump set, D.
Defining e = r − y, ξ = xI − xeq, the controller reset
condition is 2eξ + ξ2ε < 0, τ > ρ, and the state is reset to
e+ = e, x+I = xI − αε, ξ+ = 0, τ+ = 0.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

306

Listing (1) PID controller implementation in Arduino

1 f loat PID : : update (f loat y) {
2 f loat kp = params [0] , k i = params [1] , kd =

params [2] ;

3 f loat I = s t a t e [0] , e prev = s t a t e [1] ;

4 f loat e = sp − y ;

5 f loat P = kp∗e ;

6 f loat I p r ev = I ;

7

8 I += (k i ∗e) ∗ (per iod /1000 .0) ;

9 f loat v = u0 + P + I ;

10 // Cond i t i ona l i n t e g r a t i o n

11 f loat u = sat (v , 0 . 8 , 1 . 0) ;

12 i f ((u − v) ∗ e < 0 . 0) {
13 I = I p r ev ;

14 }
15 s t a t e [0] = I ;

16 s t a t e [1] = e ;

17 return u ;

18 }

(a)

Listing (2) PICI controller implementation in Arduino

1 f loat PICI : : update (f loat y) {
2 f loat kp = params [0] , k i = params [1] , pr =

params [2] ;

3 f loat I = s t a t e [0] , I c = s t a t e [1] , e prev =

s t a t e [2] ;

4 f loat e = sp − y ;

5 f loat P = kp∗e ;

6 I += (k i ∗e) ∗ (per iod /1000 .0) ; // I

7 Ic += (k i ∗e) ∗ (per iod /1000 .0) ; // Ic

8

9 f loat v = u0 + P + (1−pr)∗ I + pr∗ I c ;

10 // Cond i t i ona l i n t e g r a t i o n

11 f loat u = sat (v , 0 . 8 , 1 . 0) ;

12 i f ((u − v) ∗ e >= 0 .0) {
13 s t a t e [0] = I ;

14 s t a t e [1] = Ic ;

15 }
16 // Reset

17 i f (e prev ∗ e <= 0) {
18 s t a t e [1] = 0 ;

19 }
20 s t a t e [2] = e ;

21 return u ;

22 }

(b)

Listing (3) PI2D controller implementation in Arduino.

1 f loat PID : : update (f loat y) {
2 // read the params

3 f loat kp = params [0] , k i = params [1] , d e l t a = params

[2] , d e l t a I = params [3] ,

4 u f f = params [4] ;

5

6 // read the s t a t e o f t h e p r e v i o u s i t e r a t i o n

7 f loat I = s t a t e [0] , e l a s t = s t a t e [1] , I l a s t = s t a t e

[2] , ysp = s t a t e [3] , u f f l a s t = s t a t e [4] ;

8 f loat e = sp − y ;

9

10 // f e e d f o rwa rd : Apply u f f whenever a new s e t p o i n t

a r r i v e s and remove i t a f t e r e n t e r i n g t h e deadband

11 i f (sp != ysp) {
12 u f f l a s t = (sp > ysp) ? u0 + u f f : u0 − u f f ;

13 ysp = sp ;

14 } else {
15 i f (abs (e) < de l t a) {
16 u f f l a s t = u0 ;

17 }
18 }
19

20 // P Event

21 i f (abs (e − e l a s t) > de l t a) {
22 e l a s t += (e > e l a s t) ? de l t a : −de l t a ;

23 }
24

25 // I Event

26 I += e ∗ (per iod /1000.0 f) ;

27 i f (abs (I − I l a s t) > d e l t a I) {
28 I l a s t += (I > I l a s t) ? d e l t a I : −d e l t a I ;

29 }
30 f loat v = u f f l a s t + kp∗ e l a s t + k i ∗ I l a s t ;

31

32 // Cond i t i ona l i n t e g r a t i o n

33 f loat u = sat (v , 0 . 86 , 1 . 0) ;

34 i f ((u − v) ∗ e >= 0 .0) {
35 s t a t e [0] = I ;

36 }
37

38 // s t o r e t h e s t a t e f o r t h e nex t i t e r a t i o n

39 s t a t e [0] = I ;

40 s t a t e [1] = e l a s t ;

41 s t a t e [2] = I l a s t ;

42 s t a t e [3] = ysp ;

43 s t a t e [4] = u f f ;

44

45 return u ;

46 }

(c)

Fig. 3. Different controllers implemented in Arduino: (a) PI, (b) PI-CI, and (c) PI2D

4. RESULTS

As mentioned in Section 3, the PI controller acts as refer-
ence to compare the performance of the other implemen-
tations. The controller was tuned in the model to have an
overshoot of 10% and a settling time less than 5s, yielding
values of the parameters kp = 0.006 and ki = 0.002. In
practice, due to differences between the plant and the
model, the gains had to be slightly decreased to kp = 0.005
and ki = 0.001, in order to meet the specifications. Fig-
ure 5 shows the step response for different values of kp and
ki.

Figure 4(a) shows the step response of the PI-CI con-
troller for different values of the reset param, pr ∈
(0.2, 0.4, 0.6, 0.8), compared to the response of the PI con-
troller. As it can be seen, the reset action in the PI-CI
allows to reduce the overshoot and thus a faster response
to the setpoint change: the greater pr is, the lower the
overshoot obtained. For greater values, however, the abil-
ity to eliminate the steady state error is worst. This is

apparent in Figure 6, where different performance indexes
are computed for the experiments.

The step response of the PI2D controller is shown in
Figure 4(d) for different values of the event thresholds δ
and δI . compared to the response of the PI controller.
As it can be seen, the event-based action in the PI2D
allows to reduce the control effort (measured in number
of control actions) with respect to the PI. For greater
values, however, the control performance is affected, and
at the same time the error in steady state is not zero,
because the controller is not aware unless the value of the
error goes beyond the threshold. This behaviour is shown
quantitatively in Figure 6.

Also, with respect to the PI2D controller, Figure 4(c)
shows the step response of an implementation with kp =
0.006, ki = 0.002, and thresholds δP = 1.0, δI = 1.0.
The plot of the control signal shows the instants of time
where the events are triggered, differentiated by their type:
integral and proportional. In Figure 4(d), the effect of the
thresholds δP , δI in the steady state error can be better
understood.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

307

(a) (b)

(c) (d)

Fig. 4. (a) Step response of the PI-CI controller with kp = 0.005 and ki = 0.002, varying the reset action pr between
0 and 1, (b) step response of the four controllers with kp = 0.005 and ki = 0.002, (c) Proportional and Integral
Events, and (d) effect of δP and δI in the response.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

308

Fig. 5. Step response of the PI controller with an external
disturbance, varying kp and ki, varying the reset
action pr between 0 and 1.

Fig. 6. Performance indexes for different configurations:
Classic PI (kp = 0.005, ki = 0.002), PI-CI (pr = 0.4),
PI-2D (δ = 1.0, δI = 1.0), and ARH-PI (α = 0.8).

The value of δP is straightforward: the controller ignores
all that happens inside the error band ±δ, so the greater
the value, the less responsive is the proportional term.
Note that low values of δ are not very convenient, mostly
due to two issues: sensor noise will provoke spurious
triggers, and because of Zeno’s effect. Since the events can
be detected with a limited precision, with a lower value of
the threshold the signal may cross several bands between
two updates, so the controller will not work properly.
Considering the characteristics of the system, values of
δ = 1.0 and δ = 2.0 obtained good performance in the
experiments. The integral event threshold δI has a similar
behaviour, but acting on the integrated error. Due to the
effect of the integrator, the problem of spurious triggering
is not as important as in the proportional term, but a
minimum bound for δI must be also considered in order to
guarantee a correct detection of event times. For δ = 1.0,
the number of events generated was of the same order of
the proportional events (nP = 24, nI = 29).

The comparison of all the controllers is shown in Figure 6,
where the indexes mentioned in Section 3 have been
computed.

5. CONCLUSION

An experimental study of four different PI controllers
is discussed in this paper. Using an academic platform
based on an Air Levitation System, the controller were
implemented and tested under similar circumstances. The
experiments were repeated several times for each tested
case, yielding several datasets, in order to obtain more
robust results. The controller were compared by means
of several performance indexes, computed over the data
extracted from the experiments, and finally the graphs and
plot were generated. The results verify that, in addition to
the PID controller in its classic form, several non-linear
modifications can be considered to cope with different
control needs, such as optimization on the number of
control actions, or go beyond the restrictions that linearity
impose on the performance that can be achieved by a PID.

ACKNOWLEDGEMENTS

This work has been funded by the National Plan Project
DPI2017-84259-C2-2-R of the Spanish Ministry of Econ-
omy, Industry and Competitivity.

REFERENCES

Årzén, K. (1999). A Simple Event-Based PID Controller.
In 14th IFAC World Congress. Beijing, P.R. China.

Baños, A. and Barreiro, A. (2012). Reset Control Systems.
Springer-Verlag London.

Chacón, J., Saenz, J., Torre, L.d.l., Diaz, J.M., and Es-
quembre, F. (2017). Design of a low-cost air levitation
system for teaching control engineering. Sensors, 17(10).

Escaño, J.M., Ortega, M.G., and Rubio, F.R. (2006).
Position control of a pneumatic levitation system. In
Proceedings of the 10th IEEE International Conference
on Emerging Technologies and Factory Automation.

Jernigan, S.R., Fahmy, Y., and Buckner, G.D. (2009). Im-
plementing a remote laboratory experience into a joint
engineering degree program: Aerodynamic levitation of
a beach ball. IEEE Transaction on Education, 52, 205–
213.

Lehmann, D. and Johansson, K. (2012). Event-Triggered
PI Control Subject to Actuator Saturation. In IFAC
Conference on Advances in PID Control.

Åström, K.J. and Hägglund, T. (2005). Advanced PID
Control. ISA-The Instrumentation, Systems, and Au-
tomation Society.

Sánchez, J., Visioli, A., and Dormido, S. (2011). A two-
degree-of-freedom pi controller based on events. Journal
of Process Control, 21, 639–651.

Scola, I.R., Quadrios, M.M., and Leite, V.J.S. (2017).
Robust Hybrid PI Controller with a Simple Adaptation
in the integrator reset state. In IFAC PapersOnLine,
volume 50.

Timmerman, P. and van der Weelea, J.P. (1999). On the
rise and fall of a ball with linear or quadratic drag.
American Journal of Physics, 67, 538–546.

Vasyutinskyy, V. and Kabitzsch, K. (2006). Implementa-
tion of PID Controller with Send-on-Delta Sampling. In
ICC’2006, International Conference on Control. Glas-
gow, Scotland.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

309

