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Abstract: In this paper a fast automatic tuning methodology for velocity controllers of mechatronic
systems is proposed. In order to be applicable in general, the method takes into account the position,
velocity and torque constraints of the motion control system and it requires a minimum intervention of
the operator. Further, it can be implemented also with small computational capabilities which makes it
suitable for industrial drives. Simulation results show the effectiveness of the technique.
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1. INTRODUCTION

While automatic tuning methodologies for proportional-integral-
derivative (PID) controllers have been widely developed and
applied in process control applications (Åström and Hägglund
(2006)), the subject needs further developments for industrial
drives applied to motion control of mechatronic systems in the
context of industrial applications like, for example, hoist and
crane systems or injection molding machines (Choi and Chung,
2004).
In fact, when an automatic tuning method is applied to a mecha-
tronic system, it has to fulfill some specific requirements, in
addition to those that are typically taken into account also in
process control. In particular, depending on the machine on
which the autotuning procedure is applied, position, speed and
torque/acceleration constraints have to be considered. Indeed,
each motor has its own speed and torque limits but they could
be further restricted by the specific application, in order to
avoid possible damages of the mechanical structure. Also the
jerk should be limited as much as possible, because the use
of discontinuous accelerations may induce vibrations, which,
in general, may reduce the lifespan of the machine. Then, there
are peculiar parameters of the dynamic model to estimate (upon
which the PID controller can be tuned), such as inertia, static
and dynamic friction, elasticities, and so on.
In any case, as in process control, it has to be taken into
account that the automatic tuning method should have those
characteristics that are very appreciated in an industrial frame-
work. Namely, it has to require a minimum intervention of the
operator (who, ideally, should not to take any decision in the
procedure) and its duration should be as short as possible in
order to avoid to decrease the productivity, to minimize the
energy consumption and to avoid possible waste of material
(whose production could not be of the required quality when
the autotuning procedure is performed).
In this context, different methodologies have been proposed in
recent years. In particular, by considering the speed control

task, the application of pseudo random binary signal (PRBS)
or a slightly more sophisticated stepwise signal to the torque
have been proposed in order to estimate the frequency response
of the system and, most of all, the presence of resonances
(Villwock and Pacas, 2008; Weissbacher et al., 2013; Beineke
et al., 1997). This can be done by applying, for example, a Fast
Fourier Transform (FFT) or the Welch method (Villwock and
Pacas, 2008) to the input and output signals of the system. Note
that the identification experiment can be performed either in
open loop or in closed loop. In the latter case, of course, an
already tuned (PID) controller has to be in place which might
be a disadvantage if the commissioning phase is at its very
first stage. In any case, as already mentioned, the presence of
many steps in the torque signal might not be suitable for the
machine as high-frequency vibrations can be induced (even
if the excitation of the high-frequency dynamics is actually
the purpose of the method). Then, the PRBS signal has to be
properly designed.
An alternative method can be the use of a swept sine wave. In
(Goubej et al., 2013; Goubej, 2015), a methodology has been
proposed in order to effectively deal with measurement noise
and nonlinearities of the system. The main disadvantage of this
technique is that its duration can be excessively high.
A very interesting two-stage approach has been recently pro-
posed in (Calvini et al., 2015). First, the overall inertia, and the
static and viscous friction coefficients are estimated by using
a filtered PRBS signal (note the filter bandwidth has been set
arbitrarily to 10 Hz). Then, a PRBS signal or simply a torque
pulse (depending on the presence of backlash) is applied to
estimate the high-frequency parameters. However, in this case
position, speed and torque limits are not taken into account
explicitly.
Once a model of the system has been obtained, the PID con-
troller can be tuned. In this context, the presence of resonant fre-
quencies (mainly due to the presence of an elastic transmission
between the motor and the load) has to be properly handled, for
example by considering the limits of PID controllers (Goubej
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and Schlegel, 2014; Zhang and Furusho, 2000) and, in case,
by using a more complex controller, by exploiting notch or bi-
quadratic filters or observers that allow the virtual measurement
of the load speed (Ellis and Lorenz, 2000).
Regarding the PID tuning, although optimization methods
might yield a significant increment of the tracking performance
(Calvini et al., 2015), it has again to be taken into account that
the available computational capabilities might be limited, so
that the use of simple tuning procedure are desirable in general.
In this paper a new automatic tuning approach that aims at sat-
isfying all the previously mentioned requirements is proposed.
The proposed method is able, in just one experiment, to find
the appropriate PI controller and filter parameters. The exper-
iment is composed by an initial part where the static friction
coefficient is found. Then, a series of torque steps is properly
given in order to find the frequency response of the system. In
this context, the effect of the static friction is suitably removed
from the data. If a resonant frequency is detected, a battery
of bi-quadratic filters is designed. Finally, from the obtained
frequency response, a first-order transfer function is used to
approximate the system and to tune the PI parameters.
It is worth stressing that the operator just needs to set the
position, speed and torque limits of the motor for the given
machine and then the procedure is fully automatic.
The paper is organized as follows: in Section 2 the proposed
autotuning methodology is described in detail; in Section 3 the
simulation results obtained by testing the proposed method on
both rigid and elastic systems are shown. Section 4 concludes
the paper.

2. PROPOSED METHODOLOGY

The automatic tuning approach proposed in this paper is com-
posed by a single procedure (see Figure 1), which can be di-
vided in four parts: (i) an initial part where the motor torque
is increased by small steps until the system starts moving to
identify K f ; (ii) a second part where a series of positive and
negative torque steps is given to the system in order to estimate
the frequency response; (iii) a third part where, if necessary, a
series of two bi-quadratic filters is tuned to compensate possible
resonance and anti-resonance frequencies; (iv) a fourth (and
last) part where the system is estimated as a first-order transfer
function and a PI controller is tuned.
Thus, given the torque limit τ̄ , the speed limit ¯̇

θ , the position
limit θ̄ , which have to be set by the user depending on the
application, the four steps can be outlined as follows.
(i) At the beginning, a torque signal is given to the motor in
order obtain an estimation of the numerical values of the static
friction coefficient K̂ f . The torque signal is composed by a
series of small steps that continuously increase until the system
moves (see Figure 2). Each step has a magnitude computed as

∆τ =
τ̄

Nsteps
(1)

where ∆τ represents the torque step amplitude, τ̄ is the maxi-
mum applicable motor torque and Nsteps represents the numbers
of steps on which the maximum torque value is divided. Nsteps
is a tunable parameter, and its choice depends on the desired
precision for the friction estimation. To understand if the system
moves, a threshold equal to 1.5 times the common velocity
measurement noise θ̇noise is applied. If the velocity exceeds, in
magnitude, the velocity threshold, the static friction coefficient
K̂ f is estimated, otherwise the torque input is increased by
another ∆τ .

Fig. 1. Schematic flow chart of the autotuning procedure.
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Fig. 2. Proposed torque input for the estimation of K f .
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(ii) After having estimated K̂ f , a series of torque steps is given
to the system in order to estimate its frequency response (see
Figure 3). In order to compute the steps amplitudes and the
steps times, to better estimate the response of the system over
its working conditions, the torque τ̄ , speed ¯̇

θ and position θ̄

limits of the motor must be taken into account. In this context, a
frictionless system is considered with a maximum inertia equal
to two times the motor one (denoted as Jm). This choice comes
from the fact that in motion control applications a speed reducer
is usually employed in such a way that the load inertia seen
by the motor (i.e., the load inertia divided by the square of the
reduction rate) has a value similar to the motor inertia Giberti
et al. (2011). Furthermore, by considering a frictionless system,
the presence of friction in the real system ensures that the
maximum real velocity and the real maximum reached position
are lower than the maximum ones defined by the user. When
defining the three traits law of motion, it is important to allow
the evolution of the system as much as possible after an excita-
tion signal, therefore a long zero acceleration (that means zero
torque) trait must be used between the two positive and negative
acceleration traits. Moreover, the torque steps amplitude has
to be big enough to overcome the non linearities that affect
values of torque that are near the limit of the friction torque K f .
The amplitude of the step torque is thereby set as the torque
limit τ̄ for a the first three traits law of motion. The law of
motion is then defined by calculating the total time ttot and the
acceleration time ta, that can be expressed in relation to the total
time introducing a coefficient α as ta = αttot . The system that
gives the values of α and ttot under the conditions of ¯̈

θ1, θ̄ and
¯̇
θ is 

α1 =
¯̇
θ 2

¯̇
θ 2 + ¯̈

θ 2
1

ttot1 =
¯̇
θ 2 + ¯̈

θ1θ̄

¯̈
θ1

¯̇
θ

(2)

with
¯̈
θ1 =

τ̄

2Jm
.

An opposite three traits acceleration law of motion is applied,
when the free evolution of the system has ended, in order to
bring the motor back to the initial position (see Figure 5).
When the free evolution of the system has ended again, in order
to better estimate the frequency response of the system, the
procedure is repeated decreasing the torque step value to half
of the maximum torque τ̄ , and the parameters are calculated
solving system (2), with

¯̈
θ2 =

τ̄

4Jm
.

instead of ¯̈
θ1, resulting in ttot2 and α2. Given the sampling

period Ts of the control system the frequencies used for the
estimation of the frequency response of the system are selected
as

ωi = 10Wi for i = 0 . . .N (3)
where

Wi = log(ω
¯
)+∆i (4)

and

∆ =
log(ω̄)− log(ω

¯
)

N
, (5)

where ω
¯

and ω̄ are the minimum and maximum frequency
of the range respectively, N is the number of frequencies to
consider and ∆ defines the linear relation between the minimum
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Fig. 3. Proposed three traits law of motion, with ttot = 10 [s]
and tα = 1 [s].

and the maximum frequency. It is worth noting that this kind of
selection permits to have the same frequency resolution on all
the logarithmic scale.

To obtain the frequency response of the system, the Hv method
presented in (Vold et al., 1984) can be used.

(iii) At this point, if a resonance frequency is detected, a series
of two bi-quadratic filters is properly designed. The transfer
function of a bi-quadratic filter for the resonance compensation
is

Hr(s) =
s2 + ωr

F s+ω2
r

s2 +Rωrs+ω2
r

(6)

where ωr is the resonance frequency, ωa is the anti-resonance
frequency, F is a parameter that allows the compensation of a
possible estimation error of ωr and

R =
ωa

ωr
+

ωr

ωa
. (7)

In order to compensate for resonance frequency estimation
errors, a suitable value of the parameter F is selected as the
difference in decibel between the frequency response at the
resonance frequency Aωr and the frequency response at the anti-
resonance frequency Aωa . This difference becomes

F =

∣∣∣∣∣10Aωr /20

10Aωa/20

∣∣∣∣∣ . (8)

For the compensation of the anti-resonance of the system, the
transfer function of bi-quadratic filter is

Ha(s) =
s2 +Rωas+ω2

a

s2 + ωa
F s+ω2

a
(9)

where R and F are the same as the ones expressed in (7), (8).
(iv) At the end, independently from the execution of step (iii), a
first-order approximation of the system is performed. The first-
order estimation of the transfer function of the system

P̂(s) =
k

tps+1
(10)

is obtained as follows:

• the gain parameter k is computed as the mean value of the
magnitude of the frequency responses of the three lower
frequency values;

• the time constant tp is estimated as the inverse between
the frequency value (denote as ωp) when the frequency
response is 3dB less than 20log10(k)dB, that is ωp.
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Given the PI controller in the form

C(s) = Kp

(
Tis+1

Tis

)
, (11)

by zero-pole cancellation, imposing Ti = tp, the following
closed-loop first order transfer function is obtained:

Ĝ(s) =
P̂(s)C(s)

1+ P̂(s)C(s)
=

kKp

Tis+ kKp
(12)

Now, by considering the maximum amplitude ∆θ̇spmax of a set-
point step selected by the user depending on the application,
Kp can be tuned, in order to ensure that the actuator will not
saturate, as

Kp =
τ̄

∆θ̇spmax

(13)

It is worth stressing that the operator just needs to select the
sampling period of the controller, the maximum amplitude
∆θ̇spmax of a set-point step and the position, speed and torque
limits of the motor. The procedure is then fully automatic.

3. SIMULATION RESULTS

The proposed methodology has been tested in the Mat-
lab/Simulink environment on two different simulated systems:
a rigid system and an elastic one. In both systems θ represents
the motor position while θL represents the load position.
The rigid system that has been used in the simulation has been
modelled as 

θ̈ = 1
Jtot

[
τr−K f sgn(θ̇)−Bmθ̇

]
θ̈L = iθ̈
τ̇r = 1

te
(τ− τr)

(14)

where Jtot = Jm + JL/i2 is the total inertia seen by the motor,
i is the transmission ratio, K f is the static friction coefficient
and Bm is the viscous friction one, τr is the real motor torque,
τ is the desired motor torque and te is the electric time constant
of the electrical drive. The last equation has been added to
approximate the effects of the electrical drive. The data of the
rigid system parameters that have been used in the simulations
are listed in Table 1, along with the torque, velocity and position
limits imposed for the automatic tuning procedure.
The results obtained during the part (i) of this simulation are
shown in Figure 4. As it is possible to see, the static friction
parameter estimated during this part is very close to the real
one (K̂ f = 0.0520), using Nsteps = 20000.
In part (ii), the frequencies parameters in (5) have been set to
the following values:

ω
¯
= 0.1 [rad/s]

ω̄ =
2π

5Ts
[rad/s]

N = 200

(15)

Parameter Motor simulator Unit
Jm 2.8 10−4 kgm2

JL 0.0070 kgm2

K f 0.05 N
Bm 0.032 N/(rad/s)
i 5 −−−
te 2.5 10−4 s
τ̄ 10 Nm
θ̄ 500 rad
¯̇
θ 300 rad/s

Table 1. Simulated rigid system data.
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Fig. 4. Estimation of the static friction parameter K f on the rigid
system. The real static friction parameter value is the red
dashed line.
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Fig. 5. Proposed input torque set point and the relative mea-
sured motor velocity and position of the simulated rigid
system during the frequency response identification trial.
It can be seen that the second three traits acceleration law
of motion is applied only after the rest of the system.

Times ttot1 = 1.6835 [s] and ttot2 = 1.7003 [s] and coefficients
α1 = 0.0100 and α2 = 0.0198 have been determined solving
system (2) for the two sequences of the input torque, and the
plots of the resulting identification experiment are shown in
Figure 5. The obtained system frequency response is shown
in Figure 6. As it is possible to see, the estimated frequency
response (blue solid line) is very close to the one of the real
system without the static friction (black dashed line); also the
first-order approximation (green dashed line) is very close to
the estimated frequency response of the system. Furthermore,
as expected, no resonance and anti-resonance frequencies have
been detected. The determined first-order transfer function is

P̂(s) =
31.303

0.0173s+1
(16)

As it is possible to see from Figure 6, no resonance or anti-
resonance frequencies have been detected, so, during the part
(iii) of this procedure no bi-quadratic filters have been tuned.
In phase (iv), given a maximum set-point step velocity of
∆θ̇spmax = 200 [rad/s], the resulting PI parameters are

Ti = 0.0173 Kp = 0.050 (17)

The step responses obtained from the system are shown in
Figure 7, where step response of the closed-loop first-order
approximation and the one of the closed-loop real system are
compared.
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Fig. 6. Frequency response of the simulated rigid system: real
linearized response (black dotted line), estimated one with
the proposed methodology (blue dashed line) and first
order approximation (red solid line).
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Fig. 7. Step response (top) and control variable (below) of the
simulated rigid system with the proposed control strategy
with θ̇sp = 200[rad/s]: ideal first-order system response
(red solid line) and real system response (blue dashed
line).

As a second example, an elastic system described by the fol-
lowing model has been considered

θ̈ = 1
Jm

[
τr−K f sgn(θ̇)−Bmθ̇ − K

i dθ − C
i dθ̇

]
θ̈L = K

i dθ + C
i dθ̇

τ̇r = 1
te
(τ− τr)

(18)

where dθ =
(

θ

i −θL
)
, dθ̇ =

(
θ̇

i − θ̇L

)
, K is the elastic constant

and C is the damping coefficients of the system. The values of
the parameters and the user defined limits that have been used in
the simulations are equal to the ones of the rigid system, listed
in Table 1, exception made for the elastic constant K and the
damping coefficient C, whose values are K = 100 [N/rad] and
C = 0.30 [Ns/rad].
The results obtained during the part (i) of this simulation are
shown in Figure 8. As it is possible to see, also if there is a
resonance in the system, the static friction parameter estimated
during this part is very close to the real one (K̂ f = 0.052).
In part (ii), times ttot1 = 1.6835 [s] and ttot2 = 1.7003 [s] and
coefficients α1 = 0.0100 and α2 = 0.0198 have been deter-
mined, and the plots of the resulting identification experiment
are shown in Figure 9. The obtained system frequency response
is shown in Figure 10. The obtained first-order transfer function
is

P̂(s) =
31.3383

0.0196s+1
(19)
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Fig. 8. Estimation of the static friction parameter K f on the
elastic system. The real static friction parameter value is
the red dashed line.
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Fig. 9. Proposed input torque set point and the relative mea-
sured motor velocity and position of the simulated elastic
system during the frequency response identification trial.

100 101 102 103
5

10

15

20

25

30

Fig. 10. Frequency response of the simulated elastic system:
real linearised response (black dashed line), estimated one
obtained with the frequency response analysis (blue dotted
line), first-order approximation (red solid line) and system
with notch and antinotch (magenta dash-dot line).

As it is possible to see, the estimated frequency response (blue
solid line) is very close to the real one (black dashed line).
The first order approximation (green dashed line) is able to find
properly the low frequency pole of the system. Furthermore, as
expected, one resonance and one anti-resonance frequency has
been detected.
In (iii) a couple of bi-quadratic filters has been used in order to
compensate for the resonance and antiresonance of the system.
The two bi-quadratic filters have been tuned by considering
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Parameter Real value Estimated value Unit
ωr 199.5 201.27 rad/s
ωa 118.6 116.18 rad/s

Table 2. Comparison between real and estimated
resonance and anti-resonance frequencies.
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Fig. 11. Step response of the simulated elastic system with
the proposed control strategy θ̇sp = 200[rad/s]: ideal first
order response (red solid line), response of the system
with bi-quadratic filters (magenta dash-dot line), and real
system without bi-quadratic filters (dashed blue line).

the estimated resonance frequency ω̂r and anti-resonance fre-
quency ω̂a shown in Table 2. Finally, in phase (iv) of this
procedure the tuning of the PI controller has been tested. The
resulting PI parameters are

Ti = 0.0196 Kp = 0.050 (20)
The step responses obtained from the closed-loop system are
shown in Figure 11, where the ideal first-order system and the
closed-loop real system with and without the bi-quadratic filters
are compared.

4. CONCLUSIONS

In this paper a fast autotuning procedure for the velocity loop
of mechatronic systems is presented. The method is based on
a single short experiment that permits the identification of the
static friction and the frequency response of the system. A bat-
tery of bi-quadratic filters is automatically tuned if a resonance
frequency is detected. A PI controller is finally tuned based
on a first-order approximation of the system, obtaining a first-
order closed loop system. During the automatic procedure the
limits related to the maximum torque, speed and position of the
system are explicitly considered.
To test the procedure, simulations on a rigid and on an elastic
system have been made in the Matlab/Simulink environment.
The results confirm the effectiveness of the proposed method-
ology.
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