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Abstract: In the literature, finding all stabilizing controllers are widely studied. In this paper,
a case study of inverted pendulum is considered to test the methods for finding stabilizing state
feedback controller. First, good set of state feedback gain matrix is calculated, two of feedback
parameters are fixed to reduce the computational cost. The other two of feedback parameters
that make the system stable are then calculated by gridding. The boundary of the stability
region is calculated with the frequency method. In order to have fast response, the eigenvalue
region of the closed loop system is defined as the left hand side of the −1 + jω line and the
stability region for feedback gains are calculated for this scenario.
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1. INTRODUCTION

In the literature, rather than finding a good set of con-
troller for a given system, the topic of finding all stabi-
lizing PID controller is studied by many researchers. In
order to test these possible controllers, inverted pendulum
has widely used by many researchers as a useful testbed
Yadav et al. (2016). Inverted pendulum also has paramet-
ric uncertainties in both model parameters and designing
controllers or compensator Yue et al. (2015).

A certain set of performance criteria is optimized in Malan
et al. (1994), Saeki and Kimura (1997), Ohta et al. (1997),
Daley and Liu (1999). But this optimization decreases the
uncalculated or unexpected performance loss. So, finding
all stabilizing PID controllers to design controller is help-
ful. In this context, Shafiei and Shenton (1994) and Shafiei
and Shenton (1997) have proposed a graphical approach
using D-partitioning method to determine the borders of
absolute and relative stability regions in the parameter
space. Characterization of all the stabilizing gains using
a generalized Hermite-Biehler theorem is provided in Ho
et al. (1996). Then, Ho et al. (1997b) and Ho et al. (1997a)
have extended this results to characterize stabilizing PID
compensators. Ho et al. (1998) found a systematic way
of finding the maximum and minimum values of the Kp,
Ki, and Kd terms to guarantee stability in the resulting
closed-loop system based on generalization of the Hermite-
Biehler Theorem. Munro (1999) proposed a new method
to this problem based on the use of the Nyquist plot.

Munro and Soylemez (2000) claimed that Nyquist plot
based approach is computationally much faster than that
of Ho et al. (1998) and Shafiei and Shenton (1997), and
the computing time is polynomic with system order, it
was recently realized that for systems with no explicit

time delay term, or for situations where time delay could
be adequately represented by a Padé approximation, a
simpler approach to this problem could be implemented
by Munro (1999) and Munro et al. (1999).

Munro (1999) and Munro et al. (1999) suggested a nu-
merical frequency domain approach in order to find the
set of D-stabilizing low-order compensators. Datta et al.
(2013), Ackermann and Kaesbauer (2001), and Bajcinca
(2006) have shown that the stabilizing region is defined
by a set of convex polygonal slices normal to Kp axis in
the (Kp, Ki, and Kd) parameter space for continuous time
PID controllers.

In this paper, the Quanser inverted pendulum platform
is taken as a case study. The rest of the paper is organ-
ised as follows. In Section 2, the mathematical model is
given and nonlinearities such as trigonometric terms are
eliminated with the help of linearization. The parameters
of the system is assumed to be certain and obtained with
measurements and with identification test cycles. The con-
trollability and observability of the system is tested. In
section 3, firstly, full state feedback controller is proposed
in PD based with instant measurement of displacement,
speed, angle, and angular rate. The system has four states
and therefore the controller has four parameters. Finding
all stabilizing state feedback controllers requires searching
for all four parameters at the same time, so a constraint is
introduced, two of its parameters are fixed and the stabi-
lizing region for the other two are calculated by gridding
and frequency methods. A gain is then chosen to test the
response of the system, due to actuator saturation, the
system is close to unstability. To overcome this situation,
the gain K is searched which makes all the roots stay on
the left hand side of −1 + jω axis. Then a test point is
chosen and results are presented in section 4.
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2. SINGLE INVERTED PENDULUM PLATFORM

Inverted pendulum with moving cart mechanism is a
widely-used platform to test new approaches in controller
design. Pendulum with moving cart on a track has two
equilibrium points: first, pendulum aligned with the grav-
ity vector pointing downwards, the other is pendulum
being again aligned with the gravity vector and in this
case pointing upwards. The first equilibrium point is in-
herently stable because the center of the gravity (CG)
of the pendulum is below the pivot point. In the second
equilibrium point, the CG of the pendulum is above the
pivot point and and marginally unstable. Therefore the
pendulum diverges and return the asymptotic stability
condition when it is disturbed with an insignificant force
or moment. The second condition is marginally unstable
due to this behaviour, controllers often implemented to
make the system stable in the inverted configuration.

In Fig. 1 and 2 the testbed configuration can be seen.
The cart can move left and right on the track, and the
pendulum can rotate around the pivot axis. This testbed is
a Single-Input Multiple-Output (SIMO) system, one input
is the motor voltage and two outputs are the position of the
cart and the pendulum angle. It has two high resolution
encoders to measure the displacement of the cart and the
pendulum angle. There is a DC motor to move the cart
along the track which is the actuator to control the system.

Fig. 1. Pendulum on a moving cart test platform.

2.1 Mathematical Model

The mathematical model of the system is derived from
the Newton’s second law of motion. The equations are
nonlinear and needs to be linearized in order to design
linear controller. Assuming that the angle of the pendulum
is small, the equations are linearized.

ẍc =
1

JT

(
−JκBeqẋc −MplpBpα̇+M2

p l
2
pgα+ JκFc

)
α̈ =

1

JT
(− (MplpBeq) ẋc − JξBpα̇+ JξMplpgα+MplpFc)

(1)

where

Fig. 2. Inverted Pendulum Platform

Jeq = Mc +
ηgK

2
gJm

r2mp

JT = JeqJp +MpJp + JeqMpl
2
p

Jκ = Jp +Mpl
2
p

Jξ = Jeq +Mp

(2)

2.2 State Space Form

The system can be represented in state space format. The
state vector:

x = [xc α ẋc α̇]
T

(3)

The state space representation:

ẋ = Ax+Bu

y = Cx+Du
(4)

where xc is the position of the cart, ẋc is the speed of the
cart, α is the pendulum angle, α̇ is the pendulum angular
rate and u is the control signal which is voltage on the
motor. The system matrix:

A =
1

JT

0 0 1 0
0 0 0 1
0 M2

p l
2
pg −JκBeq −MplpBp

0 JξMplpg −MplpBeq −JξBp

 (5)

B =
1

JT
[0 0 Jκ Mplp]

T
(6)

C =

[
1 0 0 0
0 1 0 0

]
(7)
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D =

[
0 0
0 0

]
(8)

Here in the equations, Mp = 0.127(kg) is the mass of
the pendulum, Jp = 1.19 ∗ 10−3(kg/m2), is the mass
moment of inertia of the pendulum about its center of
gravity, lp = 0.178(m) is the distance from the center
of gravity of the pendulum to the pivot point, g is the
gravitational acceleration, Beq = 5.4(Ns/m) is the friction
coefficient between the cart and the track, Bp = 2.4 ∗
10−3(Nms/rad), is the viscous damping coefficient at the
pendulum axis, Mc = 0.57(kg) is the mass of the cart,
ηg = 1 is the planetary gearbox efficiency, Kg = 3.71 is
the planetary gearbox gear ratio, Jm = 3.90 ∗ 10−7(kgm2)
rotor inertia, rmp = 6.35 ∗ 10−3(m) is the motor pinion
radius. The terms Jeq, JT , Jκ and Jξ are related to inertias,
can be calculated with the given parameters.

The poles of the open loop system:

P = [0 6.38 − 6.38 − 12.47] (9)

There is a pole on the right hand side of the s plane for
the open loop system, therefore it is proved that the open
loop system is unstable.

Controllability and observability are checked before de-
signing the controller, in order to inspect if all modes
are controllable and if all the states are observable. The
controllability matrix is calculated and it is seen that it
does not lose rank therefore the system is controllable.

The observability matrix does not lose rank, therefore it is
possible to observe all the states.

3. CONTROLLER DESIGN

The system has one input and two outputs, and therefore it
can be represented with two transfer functions. However,
when PID controller is designed for each of the transfer
function (TF) assuming each TF has a SISO behaviour,
the control input for each controller only takes into account
the position or the angle feedback individually. This make
it difficult to find a set of controller that both satisfies the
stability of position and angle. It is considered that, with a
full state-feedback controller, all poles of the system can be
placed anywhere in the left half plane to make the system
stable.

u = −Kx K = [k1 k2 k3 k4] x = [xc α ẋc α̇]
T

(10)

It should be noted that, k1 and k3 behaves like a
Proportional-Derivative (PD) controller for the position
of the cart, and k2, k4 pair behaves like a PD controller
for the pendulum angle. Pole placement method can be
used to find the stabilizing K when desired location of
the closed loop system poles are known. In this case, it is
known by both simulation and experiment on the actual
system, poles in (11) stabilizes the system.

P = [−2 − 3 − 18 + 10j − 18− 10j]
T

(11)

The closed loop system matrix:

Ac = A−BK (12)

The desired poles of the closed loop system is given, and by
solving Ackermann’s formula, one can calculate the gain
K. In this case, K is calculated as:

K = [−42 115 − 46 15] (13)

In this paper, a good set of K value is calculated, then it is
to be found when k1 and k3 (the part of theK that controls
the position and velocity of the cart.) are fixed, what are
the possible sets of k2 and k4 (the part of the K that
controls the angle and angular velocity of the pendulum.).
Two methods are used to find all possible values of k2 and
k4.

3.1 Gridding Method

In this brute force method, k2 and k4 are gridded between
the values of 0 and 250. k1 and k3 are fixed, for each and
every single point on the grid, it is possible to calculate
the roots of the characteristic equation. If the point on the
grid does not have any root on the right half plane, then
that K is said to be possible stabilizing controller for the
system. When the gridding is dense enough, this method
can give all possible K that stabilizes the system when k1
and k3 are fixed. However, it should be noted that this is a
computationally expensive method, when the gridding is
dense, it takes time to give a solution.
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Fig. 3. All Possible Stabilizing Values of k2 and k4 when
k1 = −42 and k3 = −46

3.2 Frequency Method

In Fig. 3, it can be seen that the 2D shape have boundaries.
On the stable side of the boundary, if a k2 and k4 pair is
chosen and roots are calculated, the roots are observed
to be close to the imaginary axis on the left half plane,
when on the border, two roots of the system are on the
imaginary axis.

In this sense, it can be computationally less expensive to
search the boundaries of the stabilizing k2 and k4. Instead
of s in the characteristic equation, jω is placed. Now in
this case, k2 and k4 are not gridded and are to be found.
In order for jω to be a root of the characteristic equation,
real and imaginary part of the Pc(jω) should be equal to
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Fig. 4. Cart Position Time Response for K =
[−42 180 − 46 50]
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Fig. 5. Pendulum Angle Time Response for K =
[−42 180 − 46 50]

zero. There comes two equations, one from the real part,
and one from the imaginary part. There are two unknowns
and two equations, thus k2 and k4 can be calculated given
ω.

In this method, only ω is gridded, and no root calculations
are done, only two linear equations are solved to find k2
and k4. It can be said that, this method, comparing it
to the gridding method is computationally less expensive.
However, in this method, only the boundaries are calcu-
lated and it is not known which side of the boundary is
stable. In this case a test set can be chosen to test whether
the region is stable or not.

Placing jω instead of s in the characteristic equation:

Pc(s) = a4s
4 + a3s

3 + a2s
2 + a1s+ a0

Pc(jω) = a4ω
4 − a3ω3j − a2ω2 + a1ωj + a0

(14)

where

a4 = 1

a3 = 1.56k3 + 6.78k4 + 12.42

a2 = 1.56k1 + 6.78k2 + 0.72k3 − 40.77

a1 = −66.45k1

(15)

In order for jω to be a root of the characteristic equation,
both real and imaginary parts of the Pc(jω) should be
equal to zero.

Re {Pc(s)} = a4ω
4 − a2ω2 + a0 = 0

Im {Pc(s)} = −ω
(
a3ω

2 − a1ω
)

= 0
(16)

Solving (16) for k2 and k4:

k2 =
ω4 − b1(k1, k3)ω2 + b2(k1)

b3ω2

k4 =
−c1(k3)ω2 + c2(k1, k3)

c3ω2

(17)

where

b1 = 1.56k1 + 0.72k3 − 40.77

b2 = −66.45k1
b3 = 6.78

c1 = 1.56k3 + 12.42

c2 = 0.72k1 − 66.54k3 − 506.64

c3 = 6.78

(18)

First limit values of k2 and k4 are calculated, when ω = 0
and ω → ∞. In order to calculate k2 and k4 only ω is
gridded between frequencies 0 and 1000.

Table 1. Limit Values for k2 and k4

ω k2 k4
0 ∞ ∞
∞ ∞ −c1

c3

In Fig. 3 the blue dots are calculated with the gridding
method, and the red curve is the boundary of stability
calculated by the frequency method. In this figure, any
value of k2 and k4 in the stability region makes the system
stable theoretically. A set of K is chosen and implemented
on the simulation, the results are presented in the Fig.
4 for cart position, Fig. 5 for pendulum angle. These
figures inspire the control system engineer to revise the
controller gains, in order to mitigate high oscillation rates
and prevent actuator saturation.

The stability boundary jω could be shifted to further left
−1 + jω to avoid such situations, in this case, any K set
that have at least one root between jω and −1 + jω lines
are disregarded.

In the gridding method, K values that make the closed
loop system to have roots on the left hand side of −1 +
jω are taken into the new stability region, and for the
frequency method, −1 + jω is placed instead of s in
the characteristic equation. The same approach is then
used to calculate the stability boundary via gridding the
frequency.
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In Fig. 6, the blue dots are the k2 and k4 pairs that are
calculated with the gridding method. The red curve is the
jω crossing values of k2 and k4 and the orange curve is the
−1 + jω crossing values for k2 and k4.

It can be observed that the new stability region is signifi-
cantly smaller comparing it to Hurwitz stability and it is
also a bounded region.

An arbitrary pair is chosen in this region.

K = [−42 145 − 46 25]

The experiment is conducted on the actual system and
the results are presented in the Figs. 8, 9 and 10. The
time responses of cart position, pendulum angle and motor
voltage are better comparing it to the first case scenario. It
can be noticed that, for the cart position, there is a steady
state error. This is due to the fact that the mathematical
model of the system does not represent the system exactly.
In the mathematical model, the cart can move very small
distances, however in the real system there is contact
between the cart and the track and the minimum distance
that the cart can travel depend on the dimension of the
gears. Therefore, when the cart and pendulum settles on
a point on the track, the amount of control signal that
comes from the feedback of position and speed, is not
enough to change the position. Because, at the same time,
the feedback from the angle and angular rate also act to
stabilize the pendulum in the upward configuration. This
can be eliminated with introducing an integral term for
the position part of the controller.
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Fig. 6. Values of k2 and k4 when k1 = −42 and k3 = −46
that places the poles on the left side of −1 + jω

4. CONCLUSIONS

In this paper, a well-known test-bed is used to test
methods to find all possible controllers when two of its
parameters are fixed. The stability region for the other
two parameters are calculated using two different methods,
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Fig. 7. Pole Spread of the system when controller is within
the boundaries of the stability region shown in Fig. 6
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Fig. 8. Cart Position Time Response for K =
[−42 145 − 46 25]

namely gridding and frequency methods. The latter is
observed to be less computationally expensive comparing
the first method.

Considering only Hurwitz stability, the stability region for
k2 and k4 might have some values of K that cannot drive
the system to stability beacuse of unmodelled dynamics
and actuator saturation. In order to overcome this sit-
uation, the stability boundary is taken as the left half
side of −1 + jω line. Taking an arbitrary point from this
region, the system is driven to stability without actuator
saturation.

For future research, the authors plan to take the friction
coefficient as an uncertain parameter and then calculate all
stabilizing gains when the exact value of the parameter is
unknown but is bounded. The length of the pendulum can
also be taken as an uncertain parameter, however in this
case this uncertain parameter enters in the characteristic
equation, polynomic fractional fashion. It can also be
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Fig. 9. Pendulum Angle Time Response for K =
[−42 145 − 46 25]

30 31 32 33 34 35 36 37 38 39 40
Time   (s)

-8

-6

-4

-2

0

2

4

6

8

M
ot

or
 V

ol
ta

ge
   

(V
ol

t)

Motor Voltage

Fig. 10. Motor Voltage Time Response for K =
[−42 145 − 46 25]

studied on the steady state error of the cart position by
adding an integral term in K.
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