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Abstract: The closed loop regulation of hypnosis implies the mixed effect of the actions dictated
by a software based controller, and by the expert knowledge of the anesthesiologist. Other effects
such as slew rate limitations due to resolution limits or saturation of the pump infusion system
are also present in practice. Almost without exception, the actions of the anesthesiologist and
other hardware limitations are not taken into account by the software based controller, hence
they are regarded as disturbances. In this work, a PID controller is implemented to investigate
the effects of such additional features in the closed loop dynamics. The results are discussed
based on simulation study on a linear patient dynamic model.
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1. INTRODUCTION

A manifold of regulatory loops have been proposed in
the last decade for drug dosing problems, e.g. diabetes
(Kovacs, 2017a,b; Kovacs et al., 2013), anaesthesia (Lemos
et al., 2014; Merigo et al., 2017), etc. Drug intake, uptake
and clearance have been characterized using either com-
partmental models, either input-output filters by means
of linear transfer functions (Soltesz et al., 2013). In the
framework of individualised treatment, irrespective of the
medical application, it is important to deliver patient mod-
els which are sufficiently accurate yet simple in structure
such that adaptation may be obtained (Nino et al., 2009).
Optimal control response for hypnosis has shown that
no unique controller can be used to ensure the desired
performance over both induction and maintenance phases
of general anesthesia (Padula et al., 2017).

The complete regulatory paradigm is however much more
complex than anything literature addresses from control
engineering point of view. The computer based drug dosing
optimisation is always limited in the information it receives
from the system (i.e. the amount of vital signals fed back
from the patient into the control algorithm). Nevertheless,
in general anaesthesia, the anesthesiologist provides a
cocktail of optimal dosages of various drugs to induce and
maintain this complex physiological state in the patient,
while avoiding under- and over-dosing, and coping with
great patient variability (Neckebroek et al., 2013).

Effects of rate limiters, saturation, or additional bolus
infusion from the anesthesiologist which are invisible to
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the control algorithm can induce degradation in the closed
loop performance (Ionescu et al., 2017). In this way,
often conclusions that closed loop may be inadequate for
hypnosis regulatory loop are based on poor settings of the
context in which controllers may be tested and compared
against manual practice or other controllers. Also, open
loop target controlled infusion algorithms developed and
tuned by non-control experts may result in unnecessarily
high order complexity of nonlinear function adaptation,
e.g. the adaptation of the Hill curve response to the actual
patient response during the induction phase (De Smet
et al., 2008).

Since any drug regulatory loop is seen as an operator
guide and never let in full autonomous operation, the
clinical expert will always have a supervisory role and
intervene whenever necessary. From a control engineering
viewpoint, the action of the anaesthesiologist is based on
information which is not available to the controller. For
instance, the controller sees only the hypnotic state of
the patient, past values and past drug dosing samples,
makes a prediction for optimizing the best suitable dosing
scenario to reach/maintain the desired level of hypnosis.
The anaesthesiologist, however, has a broader view of
information, from the various sensing devices monitoring
vital signs of the patient, e.g. heart rate, respiratory
rate, distal oxygenation, and can anticipate effects in the
hypnotic state from this information cocktail.

In this paper, we present a robust formulation of a model
based control algorithm for hypnosis regulation to include
and analyse the hardware limitation effects on the overall
loop performance. Also, the rationale for introducing the
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anesthesiologist-in-the-loop dynamics is given and tested
in simulation.

2. CASE STUDY: HYPNOSIS REGULATORY LOOP

As an important part of the anaesthesia paradigm, hypno-
sis is characterized by unconsciousness, i.e. inability of the
patient to recall intra-operatory events. In order to control
the depth of anesthesia by means of model-based control
strategies, a suitably defined model which captures the
dynamics of the relation between drug uptake, drug effect
and the patient is required (Nascu et al., 2015; Ionescu
et al., 2015).

The selection of the model input and output vari-
ables is crucial for achieving optimal control (Bibian
et al., 2015; Ionescu et al., 2014). The pharmacoki-
netic/pharmacodynamics model most commonly used for
propofol is the 4th order compartmental model described
in (Bibian et al., 2015). This model is generically repre-
sented in figure 1, where the most important elements for
control purposes and relevant actions for hypnosis level
controls are presented. Usually, the three compartments
are referred to as blood, muscle and fat, in the order of time
constants. The usual differential equations balancing the
drug diffusion and clearance rates among these compart-
ments can be simplified to linear input-output relations,
e.g. represented as tranfer functions whose dynamics are
governed by zero-pole values (Soltesz et al., 2013). The
dynamics of patient response up to the Hill curve is thus
a simplified 4th order transfer function, whose parameters
depend on the patient’s biologic characteristics.

This 4th order patient model we will represent as P (s) =
B(s)
A(s) , with s the Laplace operator, and B,A polynomials

with coefficients relating the input u(t) (Propofol, i.e. hyp-
notic drug, infusion rate) to output Ce(t) (concentration
in the 4th, intermediate compartment). The relation be-
tween the concentration in this 4th compartment and the
measured effect signal, i.e. the Bispectral Index (BIS) is
modelled as a nonlinear sigmoid Hill curve scaled between
0%-100%, with 100% denoting fully awake patient:

BIS(t) = E0 − Emax
Cγe (t)

Cγe (t) + Cγ50
(1)

where E0 is the BIS value when the patient is awake;
Emax is the maximum effect that can be achieved by the
infusion of Propofol; C50 is the Propofol concentration at
half of the maximum effect and γ is a parameter which
together with the C50 determines the patient sensitivity
to the drug. E0 and Emax are considered equal to the
value of 100. The BIS signal has proved most suitable
in clinical trials for regulatory closed loops in hypnosis
(Absalom and Kenny, 2003), although it induces artificial
time delays from the signal processing algorithm (Ionescu
et al., 2011) and alternative, delay free signals have been
proposed (Bibian et al., 2011). An important factor in the
origin of great uncertainty in patient PD model is the great
patient variability (Padula et al., 2016).

3. INTERNAL MODEL CONTROL BASED PID TYPE
REGULATOR

The Internal Model Control (IMC) philosophy relies on the
Internal Model Principle, which states that control can be
achieved only if the control system encapsulates, either
implicitly or explicitly, some representation of the process
to be controlled and has the general structure depicted in
Figure 2 (Bequette, 2002). In this figure, d is an unknown

Fig. 2. Schematic representation of an IMC compensated
closed loop

disturbance affecting the system. The manipulated input
u is introduced to both the process and its model. The
process output, y, is compared with the output of the

model x̂, resulting in a signal d̂. If the process is well
known then a perfect estimation of the disturbances will
be reached.

An important step in IMC control design is to avoid
unstable or noncausal compensator transfer function by
adding a filter F (s) to make the compensator proper
(Bequette, 2002), and separate the model in ”invertible”
and ”non invertible” transfer functions in order to design
the controller.

A suitable choice for the filter F (s) is:

F (s) =
1

(1 + λs)n
(2)

with n such that C(s) is (semi-)proper and λ a tuning
parameter (related to the closed-loop speed). This choice
is suitable for a step setpoint and step disturbance at the
output of the process.

IMC implies a more complicated structure of the closed
loop, however for implementation it is possible to represent
it, as a general transfer function. The transfer function of
the controller in the general form is presented in (3) and
the closed loop is presented in (4).

R(s) =
P̂−1
g (s)F (s)

1 − P̂−1
g (s)F (s)P̂ (s)

(3)

Y (s) =
P̂−1
g (s)F (s)P (s)

1 + P̂−1
g (s)F (s)(P (s) − P̂ (s))

W (s)+

+
1 − P̂−1

g (s)F (s)P̂ (s)

1 + P̂−1
g (s)F (s)(P (s) − P̂ (s))

(4)

with P̂g(s) the invertible part of the process. This repre-
sentation in closed loop of the IMC algorithm is given in
figure 3.

Assuming that the process model can be approximated as
a second order minimum-phase system without time delay
Bequette (2002):
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Fig. 3. Generic scheme of the IMC in closed loop form.

P (s) =
K(βs+ 1)

(τ1s+ 1)(τ2s+ 1)
(5)

the parameters for the equivalent PID controller with filter
are obtained:

C(s) = Kp(1 +
1

Tds+ 1
+ Tis)

1

βs+ 1
(6)

with

Kp =
τ1 + τ2
λK

;Ti = τ1 + τ2;Td =
τ1τ2
τ1 + τ2

(7)

Introduce the notation

Q(s) = P̂−1
g (s)F (s) (8)

with F (s) suitably chosen. The equivalent transfer func-
tion of the IMC controller as from figure 3, can be written
as:

R(s) =
Q(s)

1 −Q(s)P̂ (s)
(9)

with R(s) replaced by the PID type controller structure.

4. ADDITIONAL ELEMENTS IN THE LOOP

It is useful to take into account a-priori hard nonlinear
limitations, such as saturation and slew rate, when dealing
with real-life processes. For instance, pump flow rate
limiters, changing pump (zero saturation), or maximal flow
rate of the pump (full saturation). Also, the fact that
the pump can only inject drug and not taking it back
(positive system) is an important challenge for control. In
this case, only the infusion dynamics can be controlled,
at various rate frequencies, whereas clearance is fixed,
for each patient in particular, by his/her own biological
characteristics.

In terms of process dynamics, these limitations are in
fact part of the process. If they are not known to the
operator, then the controller will not be aware of their
existence in the process and error may accumulate, leading
to the integrator wind-up effect. In the context of IMC, the
controller design requires an invertible, stable part of the
process. If this inversion of the process needs to be avoided,
an equivalent feedback structure must be developed in
order to allow inherent feedback inversion.

5. SIMULATION ANALYSIS RESULTS

As from (Soltesz et al., 2013), a generic formulation for
the patient dynamic response model can be given as:

P (s) = K
(s+ z1)(s+ z2)

(s+ p1)(s+ p2)(s+ p3)(s+ p4)
e−Ls (10)

with the gain K, the delay L and zeros zi and poles pi
related to the biological characteristics of the patient. For

the purpose of our study, these precise values are not
important, hence their derivation is left for the interested
reader in (Soltesz et al., 2013). We have used the following
values for representing the patient model: z1 = −10,
z2 = −15, p1 = −1, p2 = −0.8, p3 = −0.02, p4 = −0.5,
K = −0.005 and a sampling period of Ts = 1 second.
From here a simplified approximation to the structure from
(5) is extracted with the following parameters:z2 = −15,
p1 = −1, p2 = −0.8, and K = 0.005. Although the time
delay has been neglected in this study, it has been shown
to vary significantly in clinical settings and thus challenge
the control performance (Ionescu et al., 2011).

Since the effects we are going to discuss are related to
dynamic response in closed loop, the concentration-to-
effect relation from (1) has been omitted from this study.

The comparison is done between an uncompensated way
(i.e. the limitations are not taken into account) and in a
compensated way (limitations are apriori taken into ac-
count and numerically implemented in controller output),
in discretized form at sampling period of 1 second. In the
PID controller parameters, the tuning parameter λ = 15
has been used.

5.1 Resolution and Saturation Effects

Here we compare the results obtained for limitations in the
resolution of the pump infusion rates and limit saturations
in the minimal and maximal delivered values.

The first case situation is for a resolution of 0.001/100
mg/ml/second and a saturation of 0-0.02 mg/ml/second.
Figure 4-top depicts the input-output signals for the
generic PID as R(s) closed loop scheme and figure 4-
bottom for the compensated anti-windup and resolution
case. We can observe the undershoot present in the un-
compensated scheme due to saturation effect. The effect
of actuator resolution limitation (i.e. slew rate limitation)
is seen at the output as an oscillation around the desired
reference value.

Next, we re-do the same test for an improved actuator res-
olution, i.e. 0.0001/100 mg.ml.second. The corresponding
results are given in figure 5.

5.2 Surgical Stimulation Effects

A realistically designed surgical stimulus disturbance pro-
file has been developed based on clinical expertize as
depicted in figure 6. The closed loop response is given
in figure 7 for the resolution 0.0001/100 mg/ml/s and
saturation 0-0.02 mg/ml/s.

5.3 Anesthesiologist-in-the-loop Effect

To mimic the effect of anesthesiologist-in-the-loop, the
following rationale has been applied. In practice, the
anesthesiologist sees other vital signs of the patient (i.e.
blood pressure, heart rate, respiratory rate, etc) and
based on this information he acts with additional bolus
injection. Also, if he/she expects that specific intervention
taking place in the next instants will likely arouse the
patient from its hypnotic state, he anticipates its effect by
additional bolus injection. In control engineering terms,
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Fig. 4. Uncompensated (top) and compensated (bot-
tom) IMC scheme - results for resolution 0.001/100
mg/ml/s and saturation 0-0.02 mg/ml/s.

Fig. 5. Uncompensated (top) and compensated (bot-
tom) IMC scheme - results for resolution 0.0001/100
mg/ml/s and saturation 0-0.02 mg/ml/s.

this bolus injection represents a feedforward action at
the process input, aimed to compensate for a future
disturbance present at the output of the process. The
potential bolus infusion added by the anesthesiologist-in-
the-loop is depicted along with the surgical stimulation
profile in figure 8. The closed loop performance in this case
is depicted in figure 9, for resolution 0.0001/100 mg/ml/s
and saturation 0-0.02 mg/ml/s.

Fig. 6. Surgical stimulation profile as disturbance signal.

Fig. 7. Disturbance rejection in closed loop.

Fig. 8. Additional bolus infusion profile from the
anesthesiologist-in-the-loop and the surgical stimula-
tion profile as disturbance signals.

Fig. 9. Disturbance rejection in closed loop with additional
bolus infusion from anesthesiologist-in-the-loop.

5.4 Discussion

From all comparison tests above, it can be concluded that
a smoother convergence of the control effort (i.e. pump
infusion rates) is achieved with the proposed compensated
IMC scheme. This may be beneficial from the point of view
of avoiding sudden bursts into the infusion rates values,
leading to minimized over-dosing risk. Although not taken

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

87



into account explicitly by the proposed controller, the
actions of the anesthesiologist, i.e. the additional bolus
infusion, is robustly perceived by the control scheme such
that performance in closed loop is improved.

The actions of the anesthesiologist-in-the-loop may be
suitably translated in a meaningful disturbance filter in-
formation in a model predictive control strategy. Such a
model based control algorithm (MPC), is a more natural
choice than feedback based control since the anesthesiolo-
gist also reacts in an anticipatory context, as discussed in
(Ionescu et al., 2017). A manifold of surgical procedures
have well defined steps, which could be implemented in
a control loop as part of process model (i.e. patient and
surgeon). The combination between the two players is not
addressed yet in control literature, but it is necessary
in order to improve performance in presence of surgical
stimuli.

6. CONCLUSION

This paper addressed the problem of resolution and satura-
tion limits during hypnosis regulation. Additional effect of
anesthesiologist-in-the-loop has been analysed. The simu-
lation results indicate that the closed loop performance
may benefit from more detailed mimicking of the true
clinical practice, while overall clinical practice may ben-
efit from the advantages of using closed loop control (e.g
lower infusion rates, smoother rates, minimal risk for over-
dosing, etc).
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Fig. 1. A schematic representation of a closed loop infusion control with anesthesiologist-in-the-loop.
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