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Abstract: The use of active car suspensions to maximize driver comfort has been of growing
interest in the last decades. Various active car suspension control technologies have been
developed. In this work, an optimal control for a full-car electromechanical active suspension
is presented. Therefore, a scaled-down lab setup model of this full-car active suspension is
established, capable of emulating a car driving over a road surface with a much simpler approach
in comparison with a classical full-car setup. A kinematic analysis is performed to assure system
behaviour which matches typical full-car dynamics. A state-space model is deducted, in order
to accurately simulate the behaviour of a car driving over an actual road profile, in agreement
with the ISO 8608 norm. The active suspension control makes use of a Multiple-Input-Multiple-
Output (MIMO) state-feedback controller with proportional and integral actions. The optimal
controller tuning parameters are determined using a Genetic Algorithm, with respect to actuator

constraints and without the need of any further manual fine-tuning.

Keywords: Active vehicle suspension, Proportional plus integral controllers, Genetic
Algorithm, Full-car model, Constraint satisfaction problems

1. INTRODUCTION

For everyday use passenger cars, an optimal ride comfort
is the suspension system’s prominent goal. For further
ride comfort improvements, active suspension systems can
adjust the system energy to control the vibration of the
vehicle body, leading to an augmented ride comfort. In
recent years, active suspension control technologies have
become an extensive research topic, hence these systems
have significant influence on the vehicle’s subjective ride
comfort impression (Wang et al. (2018)).

With a passive car suspension, the movement of the vehicle
body is entirely dependent on the road surface and is
described by a simple mass-spring-damper system. On
the other hand, fully active suspension systems have the
ability to actively control the vertical movement of the
vehicle body, relative to the wheels. This is achieved by
applying an independent force on the suspension and can
be accomplished hydraulically or electrically.

In this work, an optimal control for a full-car electrome-
chanical active suspension is presented. For this purpose,
an active car suspension lab setup representing a full-
car suspension system was built, based on the widely
available theoretical full-car active suspension model (Ah-
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mad (2014); Darus (2008)). This new approach allows to
accurately simulate a driving car without the need of two
degrees of freedom for every wheel, but instead only uses
one fixed base and one moveable platform supported by six
active rods, leading to a more convenient setup. Kinematic
and dynamic analysis have been performed in order to
assure system behaviour which matches typical full-car
dynamics.

According to the ISO 2631 norm, the driver comfort is
quantified by the acceleration levels in the three principal
axes of translation (vertical, longitudinal and lateral)
(Strandemar (2005)). As the active car suspension lab
setup kinematically doesn’t allow for longitudinal and
lateral movement, the control objective is to minimize the
vertical accelerations in Z-axis, and thus maximizing the
driver comfort.

For simplification purposes, a full-car active suspension
model is often reduced to a half-car or even a quarter-
car model, meaning only one actively controlled spring-
damper wheel system is examined. This results in less
degrees of freedom and an overall simpler structure, but
occurring subsystem interactions are neglected. Many con-
trol optimisation techniques have been carried out in order
to obtain an adequate control for both full-car, half-car
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and quarter-car active suspension models. Kruczek and
Stribrsky (2004), for example, found an appropriate Hy,
control technique for a quarter-car model. A reduced-order
H, controller for a full-car model was established by Wang
et al. (2007).

Next to robust control, model-based predictive control
(MPC) was studied to manage active car suspensions.
A hybrid model predictive control for a semi-active half-
car model was constructed by Canale et al. (2006). Very
recently, a full-car semi-active model-predictive control
approach was formed by Nguyen et al. (2016).

Also Proportional-Integral-Derivative (PID) control tech-
niques have been used for active car suspensions. Priyan-
doko et al. (2009) designed a PI-controller for a quarter-car
model. Later, Mouleeswaran (2012) and Ekoru and Pedro
(2013) constructed a PID-controller for a quarter-car and
a non-linear half-car model, respectively. Even more re-
cently, Moradi and Fekih (2014) composed an adaptive
PID-control approach for full-car suspension system sim-
ulations, subject to actuator faults.

Satisfactory PID-settings can be determined in various
ways, from manually (mostly based on experience) to
tuning via Ziegler-Nichols (Ziegler and Nichols (1942)),
relay-feedback methods (Hornsey (2012)) or even through
software-dependent auto-tuning procedures. With the ever
increasing growth of available computational power in the
last decades, new possibilities have emerged to achieve
optimal PID-settings in ways that used to be too time-
consuming. Therefore, derivative-free iterative optimiz-
ing algorithms have become of interest, sampling a large
portion of the design space and converging to an opti-
mal solution, even for noisy and discontinuous objective
functions and with the possibility to implement hardware
constraints. Examples of the many available optimizing
algorithms are DIRECT (or Diving Rectangles), Direct
Multisearch (DMS), Simulated Annealing (SA), Genetic
Algorithm (GA), Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) or Particle Swarm Optimization
(PSO) (Gao and Porandla (2005); Custédio et al. (2011);
Igel et al. (2007); Reza Bonyadi and Michalewicz (2017)).

Genetic Algorithms (GA) have been successfully used to
determine optimal controller settings. Wu et al. (2015)
used a GA to define the optimal LQR settings to control
an inverted pendulum, while Nagarkar and Vikhe Patil
(2016) used the same methodologies for a plane’s pitch
control and a quarter-car MacPherson strut suspension,
respectively. A GA can also be used to optimize H,
control, as shown by Du et al. (2003), who investigated a
quarter-car model. Moreover, Raju and Reddy (2016) used
a GA to optimally tune a fractional-order PID-controller
to manage an automatic voltage regulator system. In this
work, a GA is used to determine the optimal Pl-settings
to control a full-car active suspension lab setup model.

The paper is organized as follows. Section 2 describes the
full-car active suspension model, from which a novel lab
setup model is derived, described in section 3. In section
4, the road profile formation and the applied control
technique for this active suspension is presented. Section
5 deals with the Genetic Algorithm and how it is used
to define the optimal controller settings. The results and
overall conclusion is given in section 6.

2. CONVENTIONAL FULL-CAR ACTIVE
SUSPENSION MODEL

The model used for a full-car active suspension system
is shown in Fig. 1. The full-car suspension arrangement
is represented as a linearised seven degree of freedom
(DOF) system. It consists of a single mass m representing
the car body (or chassis) connected to four wheel masses
(Mo, fry My, f1,Mu,rr and my, r1) at each corner. The vehicle
body mass is free to heave (z-translation), pitch (angular
displacement ) and roll (angular displacement ¢). The
suspensions between vehicle body and wheel masses are
modelled as a linear viscous damper in parallel with a
spring element, while the tyre elasticities are modelled
as simple linear springs without damping. An active car
suspension is equipped with the ability to impose a force
on the wheel masses relative to the vehicle body mass,
modelled as the forces f. For simplicity, all pitch and roll
angles are assumed to be small (Ikenaga et al. (2000)).
Regular mid-size passenger car parameters can be found
in Darus (2008). The accompanying motion equations can
be found in Ahmad (2014). From these motion equations,
a dynamic state-space representation can be extracted.

Fig. 1. Full-car active suspension model

3. FULL-CAR ACTIVE SUSPENSION LAB SETUP
MODEL

Building a full-car setup based solely on the aforemen-
tioned full-car model would be very hard, as vehicle body
mass and wheel masses have a lot of degrees of freedom
and also the base plates at every wheel corner should be
able to have a displacement disturbance. A novel active
car suspension lab setup was built in order to successfully
emulate a full-car active suspension. The model for this lab
setup can be seen in Fig. 2. At every corner of the conven-
tional full-car model’s central mass, there is a quarter-car
model with two degrees of freedom. In order to reduce the
complexity of this full-car suspension model to make it
more suitable for a lab setup, the parts representing the
wheel masses are substituted by a one degree of freedom
design consisting of a spring, damper and force actuator
in parallel.
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Fig. 2. Full-car active suspension lab model

As a result, the lab setup can be labelled as a parallel
robot, extensively studied by Liu and Wang (2014), Merlet
(2006) and Ben-Horin (1999). A kinematic study was
performed to guarantee that the lab setup will have enough
degrees of freedom to accurately emulate an active car
suspension. The lower side of the spring, damper and
actuator rod cannot translate. This has as an effect that
when the central mass is pitching along the Y-axis, the
spring, damper and actuator rod should be able to tilt
from its initial vertical position. That is why these rods
are attached to the base plate and the central mass m;
with ball couplings, providing rotational ability and fixed
relative translation. An extra pair of support is provided
at the side of the central mass, keeping the central mass
from tipping over undesirably. In addition, these rods at
the side of the central mass are also fitted with an actuator,
so an extra possible location for disturbance injection is
provided. This leads to six actuator rods in total, which
are set up in a hexagon. Consequently, the central mass
is able to translate along the Z-axis and pitch along the
Y-axis, which is sufficient for emulating a car driving over
a straight road.

Additionally, the lab setup model will not have the same
dimensions as a regular passenger car. If, for example, the
lab setup dimensions will be half of regular a passenger
car dimensions and the lab setup needs to have the same
dynamics, its weight will not be half, but 23 = 8 times
smaller. This implies that the appropriate scaling laws will
have to be taken into account, as can be further inspected
in Ghosh (2011). For the downsizing of the full-car model
to a lab setup model, a geometrical scaling of two is used.
Table 1 depicts the correct downsizing of typical passenger
car parameters, next to the lab setup parameters. It shows
that the lab setup is appropriate to approach the same
overall dynamics as a typical mid-size passenger car.

Table 1. Downscaling typical passenger car
parameters to lab setup parameters with a
geometrical scaling factor equal to two

Downsized value

from a typical Lab setup

passenger car parameter
Mass inertia (Iy) 4000/2° =125  104.45 [kgm?]
Suspension stiffness (K) 23000/2 = 11500 13000 [N/m]
Damping coefficient (Bs) 6000/22 = 1500 1800[Ns/m)]
Dimension front-rear (a + b) 2.5/2=1.25 1.03 [m]
Body mass (ms) 1400/23 = 175 58.26[kg]

The motion equations to compose the dynamic linear time-
invariant (LTI) model can be seen in equations 1 and 2.
From these, a state-space representation can be deduced.
msZ = —meg — (Kpr + K + Kpp + Kip) 2.
- (Bfr + Bfl + B + Brl) Z..
+ ((l (Kfr + Kfl) —b (Krl + Krr)) g...

+ (a (BfT + Bfl) — b (B'r’r + BTl)) 9
+ At fret e (D)

I,0 = (a(Ks+ Kp) = b (K + Kpp)) 2.,
+ (a (Bfr + Brl) —-b (Brr + Brl)) Z...
— (a2 (Kfr + Kfl> + b2 (Km« + Krl)) 0...
— (a® (Byr + By1) + b2 (Byy + By)) 0...

—a(f+ Fpe)+b (fru+ frr) + <b§“> fi+ (b;“> fr
(2)

The full-car active suspension lab model has four system
states, being central mass heave position (z), heave veloc-
ity (2), pitch angular displacement (#) and pitch angular
velocity (). Five inputs are available, being actuator force
on for every wheel rod (front-rear fr,, front-left f;, rear-
right f.- and rear-left f,;) and gravitational acceleration
g-

4. ACTIVE SUSPENSION CONTROL

To accurately mimic a driving car, a relevant road profile
needs to be formed. According to the ISO 8608 norm, a
road profile can be mathematically composed, based on
the assumption that a given road has equal statistical
properties everywhere along a section to be classified. That
is: the road surface is a combination of a large number
of longer and shorter periodic bumps with different am-
plitudes. Another input parameter for the road profile
formulation is the road roughness factor, varying from 1 to
8 with 1 being a high quality (smooth) road surface like an
asphalt layer. On the other hand, a road roughness factor
of 8 represents a very poor road quality, as in roadway
layers consisting of cobblestones or similar material (Tyan
et al. (2009); Agostinacchio et al. (2014)).

The lab setup model does not allow to impose the road
profile as displacement disturbances, because the lower
sides of the rods are fixed on the base plate with ball cou-
plings (as mentioned in section 3). Instead, the lab setup
only allows to make use of actuator force disturbances.
Therefore, the road profile displacement for every wheel
needs to be translated into a corresponding force acting
between the base plate and the central vehicle mass. This
is shown graphically in Fig. 3. As a result, the top side
of Fig. 4 depicts a road profile encountered by a vehicle
driving with a velocity of 72 km/h for 20 seconds and
a road roughness factor of 5. The bottom side of Fig. 4
illustrates the corresponding disturbance force. There will
also be a time delay for these force disturbances between
the front and the rear wheels, depending on the vehicle
speed. These actuator force disturbances are appointed
as dgy, df;, drr and d,; for front-right, front-left, rear-
right and rear-left wheel respectively. The extra available
actuators at the supporting rods at the side of the setup
are not being used in this case.
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Fig. 3. Road profile conversion from quarter-car displace-
ment disturbance to lab-setup force disturbance
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Fig. 4. Result of the road profile conversion from full-car

displacement disturbance to lab setup force distur-
bance

As stated in section 3, a state-space representation is
used to model the full-car active suspension lab setup.
The applied control loop for this model can be seen
in Fig. 5. There are two sets of inputs: u; and us to
minimize the objective function, which is to minimize
accelerations in Z-direction. The first input matrix wu;
being the force control input for each actuator of the
active suspension. The second input matrix us consists of
the aforementioned force disturbance inputs d¢,, dy;, drr
and d,; and gravitational acceleration g. These disturbance
inputs are predefined by the road profile to simulate (and
vary in time), but are not part of any control loop.

Next to the state feedback matrix Ky, an integral feedback
matrix K; is used in order to implement integral action,
assuring the system to achieve the reference value during
operation. The Ky and K; can be seen as the P and I
elements of a Pl-controller, respectively. There are four
states (z, 2, 0, 0) and four control inputs (fr, fri, frr, fri)s
so control feedback matrix Ky has dimensions [4 x 4], re-
sulting in a Multiple-In-Multiple-Out (MIMO) controller.
There are two reference values (for z and 6), so integral
feedback matrix K; has dimensions [4 x 2]. As a conse-
quence, there are 24 feedback gains to be determined.
This proves to be a challenging task for which some
controller tuning techniques are available to make a first
thorough guess, but they often do not make optimal use
of the (input) constraints and subsequently need further
manual fine-tuning. With the use of a Genetic Algorithm,
the optimal feedback gains can be found relatively easy,
without further manual adjustments and with respect to
(discontinuous) constraints.

5. GENETIC ALGORITHM

Genetic Algorithms (GA) are based on evolutionary pro-
cesses and Darwin’s concept of natural selection. In this
selection, only the fittest individuals survive, while the less
performing ones are left out. In this context, the objective
function is usually referred to as a fitness function, and
the process of 'survival of the fittest’ implies a maximiza-
tion procedure. A GA begins by randomly generating,
or seeding, an initial population of candidate solutions.
Starting with the initial random population, GA then
applies a sequence of operations like the design crossover
where two individuals from the initial population (parents)
are reproduced to get two new individuals (children) or
mutation where one individual from the initial population
is slightly changed to get a new individual. Next, the worst
designs are left out from the population and good ones are
included in the next generation. The above entire process
is repeated to further improve the objective function until
a stopping criterion is met. Possible stopping criteria are
related to e.g. maximum time or maximum number of
generations (Gao and Porandla (2005)).

As the driver comfort is maximized for minimal accelera-
tion in Z-axis, the GA’s objective function is to minimize
the RMS value of the central body’s acceleration in Z-axis.
Also, (non-)linear constraints can be taken into account
by the GA. In this particular case, the actuator controller
effort cannot exceed 1000 N, which is rather hard to take
into account with conventional methods, but very easy to
implement in the GA.

As stated earlier, the Genetic Algorithm used for this
application has 24 variables to be optimized, representing
the Ko and K; feedback matrices. A population size of 30,
elite count of 5 and a crossover fraction of 0.5 is used. The
algorithm is schematically displayed in Fig. 6.
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Fig. 5. Control loop for the full-car active suspension lab model

Initial Population 30 individual solutions with 24 variables

RMS on
z-acceleration

Determining
Population Fitness

Termination

Criteria met? is found

Elite selection 5 best individuals directly to next generation

Crossover 18 individuals formed from crossover
17 individuals formed from mutation

Mutation

30 individual solutions with 24 variables

New Population

Fig. 6. General Genetic Algorithm scheme (blue) and
applied on case (black)

6. RESULTS

After passing through 10 generations and calculating for
about 60 minutes, the Genetic Algorithm optimization
successfully determined the MIMO-controller’s optimal
feedback gains Ky and K;. The resulting performance of
this MIMO-controller is compared to a full-car passive
suspension, which is the case for the biggest part of all
normal passenger cars.

Fig. 7 shows the comparison between the car body ac-
celeration in Z-axis for passive and active car suspension
control. It is very obvious that the vehicle body acceler-
ation is dramatically reduced, resulting in a much more
comfortable ride. According to the ISO 2631 norm, the
driver comfort is quantified by the RMS value of the
acceleration, here changing from 3.8975 for passive control
to 0.0530 in the case of the active control with MIMO-
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Fig. 7. Comparison between acceleration for passive car
suspension and active car suspension with optimal
controller settings
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Fig. 8. Comparison between translation for passive car

suspension and active car suspension with optimal
controller settings

controller. In other words, an tremendous increase in driver
comfort is achieved.

Fig. 8 depicts the comparison between the car body
translation in Z-axis for passive and active car suspension
control. It can clearly be seen that the vehicle body
experiences less movement in Z-axis.
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Fig. 9. Front-right actuator control forces for active car
suspension with optimal controller settings

In addition, the actuator control force of the front-right
actuator is displayed in Fig 9, which verifies that the
actuator force does not exceed the constraint of 1000 N,
as desired. The applied control forces for the other three
actuators have a similar response. Obviously, there are
no actuator forces present in the case of a passive car
suspension.

7. CONCLUSION

From these results, at can be concluded that a Genetic
Algorithm has been successfully applied to find the opti-
mal PI MIMO-controller tuning parameters for an active
car suspension lab setup model, with respect to actuator
constraints and without the need of further manual fine-
tuning. A comment on this methodology is that this only
concerns simplified simulations of a lab setup with small
sampling times. In an actual setup, there will be e.g. a
certain delay between actuator force set-point and actual
force, undeniably leading to a system where such low
acceleration values are most likely not to be realized.
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