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Abstract: The proposed tuning method for integrating processes, which is based on Magnitude optimum 

criterion, has been extended to PID types of controllers. The method requires either the process transfer 

function (in frequency-domain) or the measurement of process steady-state change (in time-domain). The 

PID controller parameters are calculated analytically by solving fourth-order polynomial. By changing 

reference-weighting parameter b, the user can favour tracking (higher b) or control performance (lower b). 

The proposed method has been tested on several process models (lower-order with delay, higher order with 

delay, and a phase non-minimum process) and the closed-loop responses were relatively fast and non-

oscillatory. The comparison with other tuning method based on process step-response data results in fa-

vourable tracking and control performance. 
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1. INTRODUCTION 

Integrating processes can be found in chemical and process in-

dustries, while they are also common in mechanical engineer-

ing. Besides pure integrating processes, the processes with one 

or more large time constants, in comparison to the others, can 

also be modelled as integrating processes (Åström and Häg-

glund, 1995). 

There are several tuning methods existing for integrating pro-

cesses and different controller structures, as given in Åström 

and Hägglund (1995), Panda (2009), Shamsuzzoha and Moon-

yong (2008), Taguchi and Araki (2000) and Huba (2013). 

Until recently, the Magnitude Optimum (MO) method (White-

ley, 1946), which is based on optimisation of the closed-loop 

amplitude response, was not used on integrating processes. 

The symmetrical optimum method was used instead, which re-

sults in substantial overshoots for set-point reference changes.  

In Vrančić and Strmčnik (2011) the MO method has been ap-

plied on integrating processes by using 2-degree-of-freedom 

(2-DOF) PI controller structure. The tuning method could be 

used either on the general process transfer function (in fre-

quency-domain) with time delay or on process step-response 

(in time-domain).The tuning results were very good for differ-

ent types of processes when compared to some other PI con-

troller tuning methods for integrating processes, based on pro-

cess time-responses. 

In this paper the tuning method is extended to PID controller 

structure. As will be shown in the following sections, the PID 

controller can be much more efficient for tracking and control 

when comparing to the PI controller. 

The paper is set out as follows. Section 2 derives MO tuning 

method for 2-DOF PID controller for integrating processes. 

Section 3 shows the closed-loop responses on reference 

changes and on process input disturbances on several process 

models. Results are also compared to other tuning method for 

integrating processes. Conclusions are provided in section 4. 

  

2. MO TUNING METHOD FOR INTEGRATING 

PROCESSES 

Figure 1 shows the process in a closed-loop configuration with 
a 2-DOF PID controller, where signals r, u, d and y represent a 
reference, a controller output, an input disturbance and a pro-
cess output, respectively. Parameters KP, KI, KD, TF and b are 
proportional gain, integral gain, derivative gain, filter time con-
stant and reference weighting factor, respectively. 

 
 

Fig. 1. The closed-loop configuration with integrating using a 

2-DOF PID controller. 
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One possible controller design objective is to maintain the 
closed-loop magnitude (amplitude) as flat and as close to unity 
over as wide a frequency range as possible (Whiteley, 1946; 
Vrančić et al., 2001). This technique is variously called magni-
tude optimum, modulus optimum or Betragsoptimum, and re-
sults in a fast and non-oscillatory closed-loop time response for 
a large class of process models. 

If GCL(s) is the closed-loop transfer function from the reference 
(r) to the process output (y): 
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the controller is determined so as that 
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The upper equation in () is simply fulfilled by using a control-
ler structure containing the integral term (under the condition 
that the closed-loop response is stable), because the steady-state 
control error is already zero (Vrančić et al., 1999). The number 

of conditions (kmax) in () that can be satisfied depends on con-
troller order (number of controller parameters), which is kmax=3 
in the case for PID controller. 

The integrating process is given by the following general ra-
tional transfer function with time-delay: 

  
2

1 2

2

1 2

1

1
del

m
sTmPR

P n

n

b s b s b sK
G s e

s a s a s a s

   


   
 

The PID controller parameters can be calculated by inserting 

expressions () and () into expression () and by solving equa-

tions () for k=1, 2 and 3.  

Remark 1. The controller filter GF=1/(1+sTF) (see Figure 1) 
should be considered as a part of the process. Therefore, it 

should be added to expression () before calculating controller 
parameters. 

Remark 2. The controller includes integrating term even though 
the process is of integrating type. Besides other reasons, the in-
tegrating term is required for eliminating the control error under 
process input disturbances. 

The whole procedure for the calculation of controller parame-
ters is demanding and time-consuming, since it requires solving 

the mentioned set of three equations (). However, the final for-
mula for the PID controller parameters remains analytic, alt-
hough it requires solving the fourth-order polynomial. The PID 
controller parameters can be calculated from the following ex-
pressions: 
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by making the following transitions: 
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Note that the integral time constant (TI) in polynomial () 
should be solved first. The result is the real number with the 
highest value. The calculated value of TI is used in expressions 

(). The final PID controller gains are calculated in (). 

The values G00 to G40 are the following: 
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where symbols A0 to A4 represent the so-called “characteristic 
areas” of the process (Vrančić et al., 2001):  



 
0

1 1 1

2

2 2 2 1 1 1
2!

PR

PR del

del
PR del

A K

A K a b T

T
A K b a T b A a



  

 
     

 

 a

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

587



 

 

     

 



     

 

1

1

1
1

1

1 1
!

1

ik
k k i del k i

k PR k k

i

k
k i

i k i

i

T b
A K a b

i

A a

  




 





 
      

 

 





b

The characteristic areas can also be calculated from time-
domain experiment by changing the steady-state of the process. 
The process input (u(t)) and output (y(t)) signals can be inte-
grated as given below (Vrančić et al., 2001; Vrančić and 
Strmčnik, 2011):  
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The characteristic areas can be calculated as follows: 
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As already mentioned in Vrančić and Strmčnik (2011), the pro-
cess should be in the steady-state before the change of the work-
ing point and it is enough to integrate until the transient expres-

sions in () and () die out. 

The PI controller parameters can be calculated by fixing KD=0 

and solving only the first two derivatives in () (for k=1 and 2). 
The following PI controller parameters are obtained (Vrančić 
and Strmčnik, 2011): 
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Remark 3. Note that weighting factor b<1. If b=1, the integral 
gain approaches zero (Vrančić and Strmčnik, 2011). In practice 
the values 0<b<0.9 should be used.  

The PID controller tuning proceeds as follows: 

a) Select PID controller filter time constant TF. 
b) Calculate characteristic areas A0 to A4 (in frequency-

domain) from expression () or from expressions () to 

() (in time-domain) by changing the steady-state of 
the process. According to Remark 1, add the controller 

filter to the process transfer function () before. 
c) Set reference weighting factor b. According to Remark 

2, recommended values of b are below 1 (e.g. between 
0 and 0.9).  

d) Calculate the PID controller parameters from expres-

sion ().  

Matlab files, performing entire tuning of PID controller param-
eters from the process model or the process time-responses is 
available on-line (Vrančić, 2018).  

Illustrative example 

Let us calculate the PID controller parameters for the following 
integrating process:  
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with the a-priori chosen controller filter time constant TF=0.1s. 

The characteristic areas are calculated from expression (8), af-
ter adding the controller filter to the process transfer function: 


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The PID controller parameters are calculated from expression 

() by choosing different values of reference weighting factor 
b. The controller parameters are given in Table 1. The closed-
loop responses for reference change and for input disturbance 
(d=0.1) are shown in Figure 2. It can be seen that tracking per-
formance increases by increasing factor b. On the other hand, 
disturbance rejection improves by decreasing factor b. A good 
compromise between tracking and control performance seems 
to be at b=0.5 (see dashed lines in Fig. 2). 

 

Table 1. The PID controller parameters for different val-
ues of factor b. 

b KP KI KD 

0 0.60 0.095 0.88 

0.5 0.54 0.076 0.86 

0.9 0.39 0.0137 0.81 

 

The Bode plots of the closed-loop amplitude (gain) from the 

reference to the process output, for all three values of b are 

shown in Figure 3. It is obvious that the Bode plots correspond 
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to the MO criteria in expression () and that the closed-loop 

bandwidth increases by increasing factor b (the tracking speed 

improves by increasing b). 

 
 

 
Fig. 2. The closed-loop responses on the process GP for differ-

ent values of b. 
 

 

 
Fig. 3. Bode plots for different values of factor b. 

 

The PI controller parameters, for b=0.5, are calculated from 

expression ():  
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The comparison between the PI and the PID controller at b=0.5 

(see Figure 4) shows much better tracking and control perfor-

mance of the PID controller. 

 
Fig. 4. Comparison between the PI and the PID controller 

closed-loop responses. 

 

3. EXAMPLES  

The method has been tested on some other types of integrating 
processes (the second-order with delay, the fourth-order with 
delay and the phase non-minimum processes) and compared to 
the method proposed by Åström and Hägglund (1995). In the 
final version of the paper, the comparison to some other tuning 
methods are foreseen. In all the cases the a-priori chosen con-
troller filter time constant is TF=0.1s and process input disturb-
ance d=0.1 appears at t=60s in all examples. 

 

Case 1. The following second-order integrating process with 
delay is chosen: 
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The characteristic areas, when taking into account the a-priori 

chosen filter TF=0.1s, are calculated from expression (): 
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The PID controller parameters, for b=0 and b=0.5 (denoted as 
MO00 and MO05 in the following text), are calculated from 

expression (): 


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The closed-loop responses for reference change and for input 
disturbance are shown in Figure 5. It can be seen that the 
closed-loop response is relatively fast and stable without oscil-
lations, all according to the MO criteria. The results have been 
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compared to the method proposed by Åström and Hägglund 
(1995), which is based on choosing maximum sensitivity value 
to either MS=1.4 (in subsequent text Ms14) or MS=2.0 (in sub-
sequent text Ms20). However, the actual maximum sensitivity 
still depends on the process. The tracking and control perfor-
mance has been evaluated by integral of square error for refer-
ence changes (ISEr) and for input disturbance with amplitude 
0.1 (ISEu). The measured Ms values as well as the ISEr and 
ISEu values are given in Table 2.  

 

Table 2. The ISE and Ms values for example 1 

 MO00 MO05 Ms14 Ms20 

ISEr 5.73 3.19 6.85 4.96 

ISEu 0.258 0.32 4.85 0.44 

Ms 2.71 2.25 1.32 1.78 

 

According to ISE values in Table 2, the proposed method 
MO05 gives better tracking and control performance than 
Ms14 and Ms20. The best control performance is achieved with 
MO00, at the cost of slower tracking performance.  

 
 

 
Fig. 5. The closed-loop responses on the process GP1. 

 

Case 2. The following fourth-order integrating process is cho-

sen: 
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The characteristic areas, when taking into account the control-
ler filter TF=0.1s, are the following: 
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The PID controller parameters, for b=0 and b=0.5, are: 


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The closed-loop responses for the reference change and for in-
put disturbance are shown in Figure 6. Again, the MO tuning 
method for integrating processes gives stable response without 
oscillations and with small overshoots, all according to the MO 
criterion. The measured Ms values as well as the ISEr and ISEu 
values are given in Table 3.  

 

Table 3. The ISE and Ms values for example 2 

 MO00 MO05 Ms14 Ms20 

ISEr 8.79 5.01 6.85 7.47 

ISEu 1.04 1.28 4.85 1.47 

Ms 2.72 2.25 1.32 1.85 

 

According to ISE values in Table 3, the proposed method 
MO05 again gives better tracking and control performance than 
Ms14 and Ms20. The best control performance is achieved with 
MO00, at the cost of slower tracking performance. 

 

 

 
Fig. 6. The closed-loop responses on the process GP2. 

 

 

Case 3. The following non-minimum phase integrating process 
is chosen: 
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The characteristic areas, when taking into account the control-

ler filter TF=0.1s, are calculated from expression (): 
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The PID controller parameters, for b=0 and b=0.5, are calcu-

lated from expressions (): 
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The measured maximum sensitivity (MS) for b=0 is MS=3.70, 
for b=0.5 is MS=2.61, for Ms14 is MS=1.42, and for Ms20 is 
MS=2.35. 

The closed-loop responses for reference change and for input 
disturbance are shown in Figure 7. The measured Ms values as 
well as the ISEr and ISEu values are given in Table 4.  

 

Table 4. The ISE and Ms values for example 3 

 MO00 MO05 Ms14 Ms20 

ISEr 7.99 5.24 8.75 7.12 

ISEu 1.14 1.46 22.84 1.58 

Ms 3.70 2.61 1.43 2.35 

 

According to ISE values in Table 4, the proposed method 
MO05 again gives better tracking and control performance than 
Ms14 and Ms20. As in the previous two experiments, the best 
control performance is achieved with MO00, at the cost of 
slower tracking performance. 

 

4. CONCLUSIONS 

The paper presented novel PID tuning method for integrating 

processes, which was based on MO criterion. It was shown that 

the PID controller parameters, when using 2-DOF configura-

tion, can be analytically calculated. 

The proposed method has been tested on 4 different process 

models, including higher-order process models with delays 

and non-minimum phase process models. The closed-loop re-

sponses were stable and relatively fast for all tested process 

models.  

The closed-loop tracking and control responses, when com-

pared to the method proposed by Åström and Hägglund (1995), 

were comparable or better. Note that another advantage of the 

proposed method is that the controller parameters can be tuned 

from the given process transfer function or directly from the 

process time-response during the steady-state change. 

In the future we are planning to compare the proposed method 

to some other tuning methods, to derive tuning formulas for dif-

ferent PID controller structures or other types of controllers, 

and to evaluate impact of the filter order on the measurement 

noise attenuation (Huba, 2015; Huba et al., 2016). 

 

 
Fig. 7. Closed-loop responses of the process GP3. 
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