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Emre Dincel ∗ İlhan Mutlu ∗∗ Frank Schrödel ∗∗
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Abstract:
Dominant roots of the closed loop characteristic equation play a crucial role in terms of the
performance of Linear Time Invariant (LTI) systems. Within the scope of this study, a dominant
pole placement approach which has two main phases is proposed for PI/PID type controllers.
In the first phase, characteristic equation is partitioned into its dominant and non-dominant
polynomial pairs and dominant poles are placed to predetermined locations. In the second
phase, it is required to determine how far the non-dominant poles can be placed. In the current
study, this requirement is transformed into a stability problem and Lyapunov Equation-based
stability mapping approach is used. This combined approach creates a more flexible design
environment compared to the currently existing approaches in literature. In order to demonstrate
this flexibility, two benchmark case studies are included with different definitions of dominant
pole placement problem.

Keywords: PID Controllers, Dominant Pole Placement, Lyapunov Equation, Relative
Stabilization, Performance Limitations.

1. INTRODUCTION

The performance of an LTI system mainly depends on
the locations of dominant and non-dominant poles. It is
desired to place dominant poles to some specific locations
in s-domain (with respect to performance criteria). Ad-
ditionally, non-dominant poles should be placed as far as
possible from the dominant poles in order to achieve the
predetermined performance criteria.

In this study, it is aimed to propose a dominant pole
placement approach which is a popular and commonly
used technique (Aström and Murray (2010)) to guarantee
the closed loop performance of a given LTI system. In this
approach the dominant poles (the roots of the second order
polynomial) that satisfy some performance criteria such
as overshoot, rise time, settling time etc., are considered.
Since the widely used performance criteria formulations
are valid only for a complex conjugate pole pair, the
remaining poles should be located far away from the domi-
nant poles. Otherwise, the desired performance criteria are
not generally met (Aström and Murray (2010)).

There are several methods available in the literature about
the dominant pole placement with PID controllers. One
of the most important studies, in which the dominant
pole placement is performed with the help of root-locus
and modified nyquist plot, can be found in (Wang et al.
(2009)). After that the authors contributed to that study
in (Li et al. (2011)) by considering the closed-loop zeros.
With the help of a similar approach, guaranteed dominant

pole placement problem is also solved in (Madady and
Reza-Alikhani (2011)) using the first order controllers.

In the above studies, the controller parameter set may be
found as an empty set for the chosen dominance factor
(m); therefore, finding a general solution in terms of ”m”
becomes an important problem in order to avoid the
recurrent calculations. For the pre-defined performance
criteria, the calculation of maximum achievable domi-
nance factor with PID controllers is given in (Dincel and
Söylemez (2015)). However, the proposed method is valid
only for the all-pole systems. On the other hand, a similar
problem, which is stated as the expression of closed-loop
performance limitations for a chosen dominance factor,
is also defined and solved via Routh-Hurwitz based ap-
proach (Dincel and Söylemez (2016)). In this paper, it is
shown that the defined problems can actually be solved
using a Lyapunov based approach. Moreover, the proposed
method is not limited to all-pole systems which means that
the systems with open-loop zero(s) can also be considered.

As mentioned earlier, for the success of dominant pole
placement approach via PI/PID controllers, the residue
polynomial, which is constructed by the remaining poles,
must be carefully considered. In order to guarantee the
roots of residue polynomial to be in a non-dominant region
in s-plane, the relative stabilization problem should be
solved. However, instead of the calculation of relative
stabilizing controller parameters, it is also possible to
transform such a problem into a regular stability problem.
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In this study, a Lyapunov Equation based stability map-
ping approach is presented to guarantee the pole regions
of the residue polynomial. Since the stability problem is
not defined in the frequency domain in this second stage
of the approach, frequency sweeping and/or calculation
of singular frequencies are not required unlike most of the
frequency domain based stability mapping approaches like
(Gryazina and Polyak (2006); Bajcinca (2006)). Addition-
ally, proposed approach is quite flexible and it can be
directly applied to different type of controllers like PID,
PI etc. A further advantage of using a Lyapunov equation
based approach is that it is possible to cover systems with
open loop system zeros in determination of the residue
pole region. The derived results are also discussed in detail
over two benchmark case studies in order to verify the
effectiveness of the proposed approach.

2. DOMINANT POLE PLACEMENT

In this section, a dominant pole placement approach
will be presented for PI/PID type controllers. However,
the proposed approach can also be used for other types
of controllers like PI and PD with slight modifications.
Let G(s) and F (s) respectively stands for the open-loop
transfer function of a system and the transfer function of
the PID controller. In this case, these transfer functions
can be represented as:

G(s) =
NG(s)

DG(s)
(1)

F (s) =
NF (s)

DF (s)
= Kp +

Ki

s
+Kds (2)

In order to perform the dominant pole placement, firstly,
two of the closed-loop poles should be placed to the
locations of s1,2 = σ ± jω where σ < 0 in complex s-
plane according to desired performance criteria such as
settling time and overshoot. Due to the fact that the PID
controller has three free parameters to be tuned, two of
them can be used for the placement of dominant poles
and the remaining one can be used for the placement of
the non-dominant poles. Based on this idea, it is possible to
express Ki and Kd parameters of PID controller in terms
of the parameter Kp and location of the dominant poles
(i.e. σ and ω).

For the considered case, the closed-loop system character-
istic polynomial can be determined as:

Pc(s) = DF (s)DG(s) +NF (s)NG(s) (3)

It is clear that the desired dominant poles are expected
to be the roots of the characteristic polynomial; therefore,
they should satisfy the equation given above. One of the
dominant poles can be substituted into (3) as below.

Pc(σ + jω) =DF (σ + jω)DG(σ + jω)

+NF (σ + jω)NG(σ + jω) = 0
(4)

The complex equation given above is solved by equating
its real and imaginary parts to zero as follows:

(DFIm
DGIm

−DFRe
DGRe

)

+ (NFIm
NGIm

−NFRe
NGRe

) = 0
(5)

(DFRe
DGIm

+DFIm
DGRe

)

+ (NFRe
NGIm

+NFIm
NGRe

) = 0
(6)

where

NFIm
= Im {NF (σ + jω)} , NFRe

= Re {NF (σ + jω)}
NGIm

= Im {NG(σ + jω)} , NGRe
= Re {NG(σ + jω)}

DFIm
= Im {DF (σ + jω)} , DFRe

= Re {DF (σ + jω)}
DGIm

= Im {DG(σ + jω)} , DGRe
= Re {DG(σ + jω)}

Now, for the sake of simplicity of the resulting expressions,
the auxiliary polynomials X, Y and Z can be defined as:

X = DFIm
DGIm

−DFRe
DGRe

(7)

Y = DFRe
DGIm

+DFIm
DGRe

(8)

Z = N2
GIm

+N2
GRe

(9)

In addition to this, it is possible to directly obtain NFRe

and NFIm
which are respectively the real and the imagi-

nary part expressions of the PID controller as:

NFRe
= Ki + σKp + (σ2 − ω2)Kd (10)

NFIm
= ωKp + 2σωKd (11)

Finally, the PID controller parameters Ki and Kd are
obtained in terms of the parameter Kp and the location
of dominant poles with the help of above expressions as
follows (Dincel and Söylemez (2017)):(

Kd

Ki

)
=


− 1

2σ
0

σ2 − ω2

2σ
1




NGIm
X +NGRe

Y

ωZ

−NGIm
Y +NGRe

X

Z



−


1

2σ

σ2 + ω2

2σ

Kp

(12)

The same approach given above can also be used for the
PI controller. In this case, the PI controller parameters
Kp and Ki can be written in terms of the dominant pole
locations (Dincel and Söylemez (2017)).(

Kp

Ki

)
=


−NGIm

X +NGRe
Y

ωZ

−NGIm
Y −NGRe

X

Z
−Kpσ

 (13)

The parametrization of all PID controllers set, which
assigns the dominant pole pair to the desired locations,
is completed. This means that for any real Kp value, two
of the closed-loop poles are guaranteed to be placed to the
locations s1,2 = σ±jω; however, the remaining closed-loop
poles may be located anywhere in s-plane.

The closed-loop system characteristic polynomial can be
given as follows with the resulting PID controller param-
eters.

Pc(s,Kp) =
(
s2 − 2σs+ σ2 + ω2

)
Pr(s,Kp) (14)

where Pr(s,Kp) is the residue polynomial constructed
by the remaining poles. In the dominant pole placement
method, it is desired that the unassigned poles to be
located away from the dominant region which is generally
on the left side of a particular line in s-plane.

Here, it is aimed to find the farthest possible location
at which the remaining poles can be placed. At this
point, a new indicator of dominance can be defined as
the ratio of the real part of the right most root of the
remaining residue polynomial and the real part of the
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dominant poles. In this study, this ratio is named as the
dominance factor will be denoted by the variable ”m”. It
is usually desired to calculate the possible maximum value
of the dominance factor (m). This problem can easily be
converted a stability problem as follows.

PR(s,m,Kp) = Pr(s+mσ,Kp) (15)

As a result, it is now possible to find the maximum value of
m and the corresponding Kp value through the polynomial
PR(s,m,Kp) using the Lyapunov equation based stability
mapping approach presented in Section 3.

3. LYAPUNOV EQUATION BASED STABILITY
MAPPING APPROACH

In this section, a Lyapunov Equation based stability map-
ping approach is proposed to determine the pole regions
of the residue polynomial. With the help of this method,
it is possible to determine how far the non-dominant poles
can be placed. Proposed approach is independent from
the number and the type of free parameters. In addition
to PID type controllers, it can be directly applied to
other types like high order, cascade, state feedback etc.
controllers.

State space model of a linear time invariant closed loop
system can be written as ẋ = A (k)x where x ∈ Rn, A ∈
Rn×n. Here, k ∈ Rp represents the controller parameters.
For example, in case of the PID, k can be written as

k = [Kp Ki Kd]
T
.

For the given problem formulation, it can be easily proven
that the system ẋ = A (k)x is asymptotically stable if and
only if the Lyapunov equation

AT (k)P + PA(k) = −Q (16)

is feasible for some strictly positive definite matrices P and
Q. However, it must be pointed out that for the uniqueness
of the solution A and −AT should not have any common
eigenvalue.

By using the Kronecker products and vectorization oper-
ator, it becomes possible to formulate (16) as standard
linear matrix equation as indicated in Laub (2005). In this
approach, Lyapunov equation can be reformulated in the
standard form as:

(I ⊗AT (k) +AT (k)⊗ I)vec(P ) = −vec(Q) (17)

where I represents the n× n dimensional identity matrix,
⊗ stands for the Kronecker product and vec(.) is the
vectorization operator.

Each entry of the original P matrix can be determined
from the following equation

vec(P ) = M−1(k)vec(−Q) (18)

where M(k) is defined as:

M(k) =
(
I ⊗AT (k) +AT (k)⊗ I) (19)

In order to be a strictly positive definite matrix, all leading
principle minors of the matrix P should be positive.In
such a case, it is required to solve 2n parametric equations
considering the numerator and denominator terms.

Whereas, it was shown in our previous studies that sig-
nificant reductions on the computational complexity may
occur, if the relations between the A(k), P (k) and M(k)

matrices are analyzed in detail (Schrödel et al. (2015);
Mutlu et al. (2016)).

Using the Kronecker product properties the relation be-
tween the system matrix A(k) and the determinant of
M(k) can be given as (Gilbert (1991)):

|M(k)| =
n∏

i=1

n∏
j=1

(λi + λj) (20)

where λ1, ..., λn are the eigenvalues of A.

In the literature, three different types of stability bound-
aries were proposed for LTI systems, when the Parame-
ter Space Approach is used (Ackermann (2012)). These
boundaries are be named as the Real Root Boundary
(RRB), the Complex Root Boundary (CRB) and the In-
finite Root Boundary (IRB). Actually, these boundaries
represent the points at which a stable polynomial becomes
unstable. For instance, in the case of RRB at least one
of the roots of the closed loop characteristic polynomial
(Pc(s)) crosses the stability boundary from the origin. In
other words, at least one of the roots of the characteristic
polynomial should be zero (s = 0) in this case.

In the specific case of RRB, there exists a root tendency
to/from the unstable region over the origin (s = 0). In
this case, at least one of the eigenvalues of the matrix
A(k) would be zero since the eigenvalues of the closed
loop system matrix A(k) and the roots of the characteristic
polynomial are identical. Additionally, it can be proposed
that |M(k)| should also be zero with respect to equation
(20).

Likewise, in the case of CRB, there exists a complex conju-
gate root pair (s = ±jω) that tend to move towards/from
the unstable region. Using the expression of |M(k)| that
is given in (20), in the case of a CRB |M(k)| would also
be equal to zero.

On the other hand, it can be proposed that if the de-
terminant of M(k) is zero then the eigenvalues of the
system matrix A(k) should satisfy the condition λi = −λj .
Under the uniqueness constraint, the last condition can be
satisfied in two ways which are s = 0 or s = ±jω. As a
result, it can be concluded that s = 0 or s = ±jw satisfy
|sI − A(k)| = 0 if and only if |M(k)| = 0. As indicated
earlier, at this point it must be noted that Lyapunov
Equation is a special case of Sylvester Equation and for
the existence and the uniqueness of the solution A and
−AT should not have any common eigenvalues.

In terms of IRB, if one of the roots of the characteristic
polynomial tends to converge to infinity (s → ∞ satisfies
|sI − A(k)| = 0) then it can be easily proposed |M(k)| →
∞ in this case.

With the help of this further analysis, it can be concluded
that in the controller parameter space k, it is sufficient to
check the following two conditions

|M(k)| = 0 and |M(k)| → ∞ (21)

in terms of stability.

Parametric solutions of the equations that is given in (21)
would divide the whole parameter space into subspaces
whose stability characteristics are invariant in each region.
In order to determine the exact stabilizing parameter
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spaces, a controller parameter pair can be selected from
each region and stability characteristic of each specific
region should be checked. This process could be automa-
tized by using the intersection points of the solutions and
applying a gradient based approach to determine a specific
controller pair from each regions.

4. CASE STUDIES

Within the scope of this section, effectiveness and correct-
ness of the derived theoretical results in Section 2 and
Section 3 will be demonstrated over two benchmark case
studies.

4.1 Case Study I: Dominant PID Design

In this subsection, a system that was also considered in
a previous study is considered as the first benchmark
example. In that sense it is aimed to point out the
benefits of the current approach under fair comparison
circumstances.

The open-loop transfer function, that would be discussed
from the PID controller design point of view can be
expressed as (Dincel and Söylemez (2015)):

G(s) =
1

(s+ 1)2(s+ 5)2
(22)

As indicated earlier, the dominant pole placement problem
can be defined from different perspectives. In this case
study, it is aimed to determine the maximum achievable
dominance factor (m) when the closed-loop performance
specifications are fixed. Since the performance criteria is
fixed beforehand, such a definition also means that it is
aimed to determine the farthest possible location for non-
dominant poles.

In this regard, let us assume the performance requirements
of the given system is chosen as 8% overshoot and 3
second rise time. For the given criteria, the corresponding
dominant pole pair is determined as follows.

s1,2 = −0.4849± 0.6031j (23)

The Ki and Kd parameters of the PID controller is then
found as follows with the help of (12).

Kd = −15.39 + 1.031Kp

Ki = 2.604 + 0.6175Kp
(24)

Fig. 1. Stabilizing σ-Kp parameter space for Case Study I

In this case, it is possible to write the closed-loop system
characteristic polynomial as follows.

Pc(s) =s5 + 12s4 + 46s3 + (44.61 + 1.031Kp)s
2

+ (25 +Kp)s+ (2.604 + 0.6175Kp)
(25)

Since the dominant poles are known, it is possible to
construct the residue polynomial Pr(s,Kp) as presented
in (14).

Pr(s) = s3+11.03s2+34.704s+(4.3485+1.031Kp) (26)

Here, it is desired to find the maximum achievable dom-
inance factor; therefore, calculation of the minimum σ
value, which stabilizes the polynomial Pr(s+σ,Kp) which
can be expressed as:

Pr(s+ σ,Kp) =(s+ σ)3 + 11.03(s+ σ)2

+ 34.704(s+ σ) + (4.3485 + 1.031Kp)

constitute a solution to the same problem. This stability
problem can be solved using the Lyapunov based approach
as explain in the previous section.

The corresponding system matrix A(k, σ) for the given
residue polynomial (26) can be determined as:

A(k, σ) =

(
0 1 0
0 0 1
a31 a32 a33

)
(27)

where
a31 = −σ3 − 11.0302σ2 − 34.7041σ − 1.0311Kp − 4.3485

a32 = −3σ2 − 22.0604σ − 34.7041

a33 = −3σ − 11.0302

There are two parameters which are σ and Kp in A(k, σ)
and it is a straight forward task to determine M(k, σ) from
(19). In this case M(k, σ) is a 9× 9 matrix since the order
of the residue polynomial is 3. However, the expression
for |M(k, σ)| is quite complex since the multiplication of
coefficient (which also include high powers of σ) terms
included in |M(k, σ)|. As a result, corresponding |M(k, σ)|
is not shown here in order to preserve the readability of
the paper.

The stability boundaries and the corresponding stabilizing
parameter region is given in Figure 1. The blue region
represents the stabilizing region while red and black curves
stand for the parametric solution of |M(k, σ)| = 0. For this
specific case, there is no IRB. As a result, it is sufficient
to check only |M(k, σ)| = 0, which can be easily solved
using symbolic methods. A detailed plot that is related

Fig. 2. Detailed plot of the stabilizing parameter space
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Fig. 3. Closed-loop unit step response with PID controller

with the critical region is also given in Figure 2. The
smallest possible σ value and the corresponding Kp can
be determined from the Figure 2 as:

σ = −2.28018

Kp = 28.4051
(28)

From the initial performance criteria, it is directly possible
to calculate the real part of the dominant poles as −0.4849.
This mean that with the given control structure and per-
formance criteria it is possible to place non-dominant poles
of the residue polynomial m = −2.28018/ − 0.4849 ∼=
4.7023 times away from the dominant regions. As ex-
pected, derived results are in accordance with the previous
results presented in (Dincel and Söylemez (2015)).

Additionally, with the present approach it is also possible
to derive further results. For instance, sometimes, it is not
possible to select the optimal solution due several reasons
such as uncertainties and/or sensitivity related problems.
Using the Lyapunov Equation based approach in the
second stage of the dominant pole placement approach,
it becomes possible to derive further results. For instance,
if it is aimed to place the residue polynomial’s right-most
pole to σ = −2 it is now directly possible to calculate the
parameter range of Kp as:

28.066 < Kp < 40.6686 (29)

If the parameter Kp = 30 is chosen, the closed-loop pole
locations are calculated as follows.

s1,2 = −0.4849± 0.6031j

s3,4 = −2.2353± 0.6171j

s5 = −6.5594

In addition, the unit step response of the closed-loop
system with designed PID controller is given in Figure 3
to verify the derived results.

Moreover, it is also possible to derive exact results for
systems that include open loop zeros using the proposed
approach. However, this was not the case for the approach
proposed in Dincel and Söylemez (2015), since it was not
possible to calculate the non-positive eigenvalues in the
case of open loop zeros in that approach.

4.2 Case Study II: Dominant PI Design

As indicated earlier, dominant pole placement problem can
be defined from different perspectives. In this case study,
it is aimed to determine the dominant pole region(s) in s-
domain which guarantee that the remaining poles can be

located at least ”m” times away from the dominant pole
pair.

Consider the following system with one open-loop zero
(Dincel and Söylemez (2016)).

G(s) =
4(s+ 4)

(s+ 1)2(s2 + 2s+ 2)
(30)

Let us use the PI controller to perform mentioned domi-
nant pole placement problem (it is also possible to use PID
controller if desired). The PI controller parameters that
place the dominant poles to s1,2 = σ ± jω in s-plane can
be calculated using (13). After that the residue polynomial
can be obtained in terms of the σ and ω as follows.

Pr(s, σ, ω) = α3s
3 + α2s

2 + α1s+ α0

where

α3 = (16 + 8σ + σ2 + ω2)

α2 = (64 + 64σ + 20σ2 + 2σ3 + 4ω2 + 2σω2)

α1 = (112+184σ+119σ2+32σ3+3σ4−9ω2+2σ2ω2−ω4)

α0 = (88+ 224σ+220σ2 +96σ3 +12σ4 − 36ω2 − 32σω2 +
8σ2ω2 − 4ω4)

It is then possible to determine the parameter regions σ
and ω that stabilize the residue polynomial Pr(s+mσ,ω)
for a given fixed m value using the Lyapunov equation
based stability mapping approach.

For instance, let us assume that it is desired to place
non dominant poles 3 times away from the dominant ones
(m = 3). Using the Lyapunov equation based stabilitiy
mapping approach for Pr(s + mσ,ω), the corresponding
|M(σ, ω)| can be calculated as:

|M(σ, ω)| = −512 (f1 + f2 + 560σ + 88) f3f4

((σ + 4)2 + ω2)
3 (31)

where fi’s are:

Fig. 4. Stabilizing parameter spaces of residue polynomial
for different selections of ”m”
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f1(σ, ω) =54σ5 + 504σ4 + 1461σ3 + 1348σ2

f2(σ, ω) =− (3σ + 4)ω4 + (σ − 1)(3σ + 4)(17σ + 9)ω2

f3(σ, ω) =σ
(
σ(51σ + 56)− ω2 + 23

)
f4(σ, ω) =

((
(σ + 4)2 + ω2

)
+ 45

)2
Based on the parametric solutions of (31) as |M(σ, ω)| = 0
and |M(σ, ω)| → ∞, the dominant pole region can be
determined as it is given in Figure 4 (the region with purple
boundary). The same procedure can be easily repeated
for different selections of m. In addition to m = 3, the
dominant pole regions for m = 4, m = 5 and m = 8 are
also presented in Figure 4.

Let us choose the location of dominant poles as s1,2 =
−0.34 ± 0.17j which are inside the obtained region for
m = 3. In this case, the PI controller parameters are
calculated as follows.

Kp = 0.01383

Ki = 0.0209
(32)

The closed-loop poles are then calculated as below and the
closed-loop unit step response is depicted in Figure 5.

s1,2 =− 0.34± 0.17j

s3,4 =− 1.065± 0.9638j

s5 =− 1.1897

0 10 20 30 40 50
t @sD0.0

0.2

0.4

0.6

0.8

1.0

1.2
yHtL

Fig. 5. Closed-loop unit step response with PID controller

Derived results in this case study are also in accordance
with the previously derived ones. However, the flexibility
of the Lyapunov Equation based approach in the second
stage of the dominant pole placement approach can be
easily recognized. Two different approaches were used in
(Dincel and Söylemez (2015)) and (Dincel and Söylemez
(2016)) due to various reasons including the differences in
problem statements, the systems considered and controller
types f concern. However, as it is shown in this section, the
presented Lyapunov Equation based approach is directly
compatible with these different scenarios.

5. CONCLUSION

A two-stage dominant pole placement approach was pro-
posed in this study. In the first step, dominant pole loca-
tions are guaranteed and in the second step, a Lyapunov
equation based approach was used to determine parameter
regions that satisfy additions conditions. For the first step
of the proposed approach, only the results for PI/PID type
controllers were presented. However, it is also possible to
derive results for P and PD type controllers by applying

slight modifications. On the other hand, the proposed
Lyapunov equation based stability mapping approach is
independent from the type of the controller and the num-
ber of free parameters. As a result, it is directly applicable
to other types of controllers than PI/PID.

In this way, the combined approach proposes a flexible de-
sign environment for different type of systems, controllers,
and dominant pole placement problem definitions. This
flexibility and effectiveness of the proposed approach are
also verified via two benchmark case studies. As a future
study, it is planned to propose a similar approach to
discrete time systems and systems with parameter uncer-
tainties.
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