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Abstract: This paper proposes a method so that all PID controller tuning parameters, which are
satisfying stability of any integrating time delay processes, can be calculated by forming the stability
boundary loci. Processes having a higher order transfer function must first be modeled by an integrating
plus first order plus dead time (IFOPDT) transfer function in order to apply the method. Later, [FOPDT
process transfer function and the controller transfer function are converted to normalized forms to obtain

the stability boundary locus in (KK 7,KK (T*/T)), (KK,T,KK T,) and (KK (T*/T),KK T,) planes

for PID controller design. PID controller parameter values achieving stability of the control system can
be determined by the obtained stability boundary loci. The advantage of the method given in this study
compared with previous studies in this subject is to remove the need of re-plotting the stability boundary
locus as the process transfer function changes. That is, the approach results in somehow generalized
stability boundary loci for integrating plus time delay processes under a PID controller. Application of

the method has been clarified with examples.
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1. INTRODUCTION

Researchers have always been interested in PID controllers
which are generally used industrial control systems owing to
their simple structure and performing robustly. Compared to
PD controllers, PI controllers have a larger usage. For this
reason, determination of tuning parameters of a PI or PID
controller is quite important (Astrdm and Hagglund, 2001).

Most commonly used methods for determination of PID
controllers are Ziegler and Nichols (1942), Cohen and Coon
(1953) and Astrom and Haggland (1984) methods. Methods
based on integral performance criteria (Zhuang and Atherton,
1993) are among very standard approaches as well. Other
methods that used for calculating PID controller tuning
parameters are Internal Model Control (IMC) (Morari and
Zafiriou) and controller synthesis (Smith and Corripio, 1997)
methods.

Special interest has been paid to determination of all
stabilizing PI and PID controller parameters after the study of
Ho et al. (1996, 1997a, 1997b, 1997c). Thanks to these
studies, all integral and derivative gain values of a PID
controller can be shown in the same plane for a fixed
proportional gain value. Although the method provides
calculation of all PI and PID controller tuning parameters,
application of the method takes time. For that reason,
researchers have gravitated to develop different approaches.
Munro and Soylemez (2000) and Soylemez et al. (2003) find
out a method that provided a faster calculation of all PID
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controller tuning parameters. Shafiei and Shenton (1997) and
Huang and Wang (2000) provided graphical solutions for
determination of all stabilizing PID controller parameter
values. Tan et al. (2003) and Tan (2005) suggested a new
approach providing a faster calculation of all stabilizing PI or
PID controller tuning parameters, based on stability boundary
locus calculation. This approach has been used in different
studies up to date. Zavacka et al. (2013) suggested a robust PI
controller design for a continuous stirred tank reactor with
multiple steady-states. Sandeep and Yogesh (2014) gave
design of a PID controller for an inverted pendulum. Yogesh
(2016) provided a PI controller design for one joint robotic
arm. Deniz et al. (2016) recommended an integer order
approximation method based on stability boundary locus for
fractional order derivative/integrator operators. All of the
studies mentioned above consider the case of a specific plant
transfer function.

In this paper, the approach suggested by Kaya and Atic
(2016) for obtaining all stabilizing PI controllers to control
open loop stable time delay processes has been extended to
all stabilizing PID controllers to control integrating and time
delay processes. In this approach, modelling of higher order
processes by a first order plus integrating plus dead time
(IFOPDT) model is required. It is assumed that relay
feedback identification method of Kaya and Atherton (2001)
can be used for this purpose. The relay feedback method
gives exact solutions if there are no measurement errors and
disturbances entering the control system. Process transfer
function model and the controller transfer function are first
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converted into normalized forms and then used to form
stability boundary loci for obtaining all stabilizing PID
controller tuning parameters for varying normalized dead
time r =@ /T . The advantage of the method is to eliminate
the need of re-plotting the stability boundary locus whenever
the transfer function changes so that calculation of all
stabilizing PID controllers becomes easier.

The rest of paper is organized as follows. Next section gives
the procedure to obtain stability boundary locus in
(KK (T*/T,)),KK T,) plane for a fixed value of KK T to
obtain all stabilizing PID controllers. In Section 3, the

application of method is illustrated with several examples.
Conclusions are given in Section 4.

2. PID CONTROLLER DESIGN FOR THE
INTEGRATING PROCESSES

Consider single-input single-output control system depicted
in Fig. 1.

) J
¥

C(s)

G(s)

Fig. 1. SISO control system

C(s) and G(s) are the controller and the process transfer

functions, respectively. Transfer function for ideal PID
controller is:

(1 )

Cs)=K_|1+—+T,s | )
L Ts )

and the IFOPDT model of process transfer function is

assumed to be given by:

K -0s
G(s)= ——— )
K (Ts + 1)
By substituting 7s =35 in (1) and (2), the normalized
controller and process transfer functions were obtained:

( ST,
CE =K, |1+ 2=+ 22 3)
\ s T )
_ KTeT  KTe ™
) 4)
S + S S + S

Here, the aim is to calculate all controller parameter values in
(1) to satisfy the stability of the control system shown in Fig.
1. Closed-loop characteristic equation of the system is
1+ C(5)G(s). Hence, substituting C(5s) and G(3),
correspondingly, from (3) and (4), the closed
characteristic equation can be found to be given by:
A(s) =

KK T’Tse™ +KK T’ + KK TTT,5°¢ ™ +TT5° -TT5"
The numerator and the denominator of (2) have been
decomposed into their even and odd parts and s = jo is

loop

(&)

replaced in order to achieve

925

N (=0")+ joN,(-a°) ©)
D,(~@°)+ joD,(-&")

Dropping the dash over » for simplicity, the characteristic
equation can be written as:

A(jo)= joKK T’T, cos(wt)

G(jo)=

+ a)KK(,Tth. sin (w7)+ KKCT3 cos(wr)

- jKK T’sin(@7)- @ KK TTT, cos(w7) )
+ jo’KK TTT, sin(w7)
- jo’TT, - 0’TT,
=R, +jI, =0.

By equating the real and imaginary parts of the characteristic

equation to zero, the following equations are obtained:
2

KK, T [a) sin(a)r)] + KK T [cos(wr)] +KK,T, [fa)2 cos(a)r)}

T, (®)

2
=0

KET [—sin (a)r)] +KK T, [a;2 sin (a)f)]

T, )

KK T[wcos(wr)]+

3
=o .

Defining the following equations,

O(w) = wsin(w7),
R(w)=cos(wr),

F(o)= -’ cos(wr),

X(a)) =’ +a)2KKL,Td cos(wr),
" (a)) o’ KK T

i

cos(wrt).

(10)

and

S(w)=wcos(w7),
U(w)=-sin(wr),
B(w)= @’ sin (w7),
Y(w)= o’ —a)zKKCTd sin (@7),
KK T?
N(o)=0'+—
T

i

sin (7).

)

Equations (8) and (9) are rewritten as follows:
2
KK TQ(0)+ KK, TTR(a;) = X (o),
-
KK TS(w)+ KK, TU(a)) =Y (w). (12)

and

KK TQ(w)+ KK T,F(w) = H(o),
KK TS(w)+ KK, T,B(w) = N(o).

(13)
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Equations (12) and (13) can be solved to obtain the following
expressions:

X (@)U (o) -Y(0)R(0)

KK.T : (14)
O(0)U(w) - R(w)S(w)
XK T Y(@)Q(w)*X(a))S(CO)’ (15)
T, Q(o)U(w)-R(w)S(w)
and
_ N@)Q(w) - H(0)S(w) (16)

 0(@)B(0) - F(0)S(o)
Equations (10) and (11) are substituted into (14), (15) and
(16) to gain the following equations:

KK .T = wsin(or)+ao’ cos(or), (17)
T2
KK,—=-0"sin(wr)+ o’ cos(or)+ 0’ KK T,, (18)
T.
and
K.T®
KK.T, = a)sin(a)r)—cos(a)‘r)+af2 ‘<. (19)

Stability boundary loci in (KK, T,KK_(T*/T,)) plane for the
normalized dead time value of r =1 and fixed KK T,
values of 1 and 0.5 are drawn, by using (17) and (18), in Fig.
2. In Fig. 3 illustrates the stability boundary loci in
(KK ,T,KK_.T,)) plane for the normalized dead time value of
r =1 and fixed KK (7 /T,) values of 1 and 0.5, by the use
of (17) and (19).

Also, it is worth mentioning that plotting stability boundary
locus for w e[0,0,] will be enough since the controller
operates in this frequency range (Tan, 2005). Here, o, is the

critical frequency value where the Nyquist plot of a plant
transfer function intersects the negative real axis, or open

loop transfer function phase is equal to —-180°. Therefore,
with the help of these graphs, the following four linear

equations are obtained by using KK (7°/7,) and KK T,
values corresponding to a constant KX 7 value.

08 ; : ‘ i .
07 KKT =1 -
cd
KK T=1
0.7131 / ¢
05~ 04011 J
£ =
=04 KKch 0.5
£
)
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02
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0 02 04 06 08 1 12 14 16 18

Fig. 2. Stability boundary locus in (KK T,KK, (T°/T,))

plane for fixed values of KK T, .
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Fig. 3. Stability boundary locus in (KK T,KK_T,) plane for
fixed values of KK _(T*/T)).

I: KK.T,=1.602(KK,(T*/T) )-0.142,

i

l: KK (T°/T) =0,
l: KK,.T,=1.603(KK (T°/T))-0.143,
l,: KK.T,=0308(KK, (T°/T,))+1.987. (20)

Using the above obtained linear equations, stability boundary
locus in (KK (T°/T,),KK T,) plane has been formed for the

normalized dead time r =1 and fixed value of KX 7 =1.
The result is depicted in Fig. 4.

25
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Fig 4. Stability region for kKK 7=1 and z=1 1in

(KK (77 /T,).KK,T,) plane.

Similar computations are carried out for normalized dead

time values of r=0.75, r=0.5 and r=0.25 so that
generalized stability boundary locus are formed in
(KK (T*/T),KK_T,)) plane. Stability boundary loci

corresponding to those cases are presented in Fig. 5. The
stability boundary loci given in Fig. 5 can be considered as
generalized, since, once the IFOPDT model is known, all
stabilizing PID controller tuning parameters can be found
from Fig. 5 for the fixed value of KX 7 =1 and varying

values of normalized dead time. If it is required, stability
boundary loci can be plotted for different normalized dead
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time and KK,T values. By this way, the approach can be
made more generalized.

-t 1 I I I |
0 1 2 3 4 5 6
(KK )(T?T,)

Fig. 5. Stability region in (KK (7°/7,),KK,7,) plane for

different normalized dead time ratios and KK .7 =1.

3. EXAMPLES

3.1 Example 1: Let’s consider a process transfer function of
G(s)=e ' /s(s+1). The normalized dead time value for this

transfer function is 7 =1. Since the actual system transfer
function exactly matches the IFOPDT model transfer
function, the relay feedback identification method (Kaya and
Atherton, 2001) will give exact solutions for the IFOPDT
model. In Fig. 5, the region remaining inside of z =1 can be
used to determine all stabilizing PID controller tuning
parameters. Some points taken from the stability region
corresponding to and the resultant PID tuning
parameters are summarized in Table 1. Note that the
controller gain K, =1 in all cases, as K =1, T =1 for this

=1

example. Fig. 6, shows the unit step responses of the closed
loop system for the determined PID controllers. The figure
proves the validity of the obtained stability region.

Table 1. Some calculated tuning parameters for example 1

Calculated
Selected points tuning
parameters
case
KK (T°/7T)) KK.T, T, T,

a 0.2 1.2 5 1.2
b 0.4 1.4 2.5 1.4
c 0.6 1.6 1.66 1.6
d 0.8 1.8 1.25 1.8
e 1 2 1 2
f 1.2 2.2 0.83 2.2
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Fig. 6. Step input responses for determined PID controllers
for example 1.

3.2 Example 2: In this example, let's take a higher order
process transfer function given by

G(s)=e /s(0.1s+1)(s+1.2). This process
function  is IFOPDT
G, (s)=0.843¢ %" /5(1.072s +1) by using relay feedback

identification method of Kaya and Atherton (2001). Obtained
IFOPDT model transfer function has the normalized dead
time of r =0.2789. Before determining all stabilizing PID
controller parameters for this example, it would be
appropriate to show the matching between the stability
boundary locus of the actual process transfer function and the
stability boundary locus of IFOPDT model transfer function.
This matching is shown in Fig. 7. As it is seen, a very close
matching has been achieved and the stability boundary locus
obtained by the actual process transfer function includes the
stability boundary locus obtained by the IFOPDT model
transfer function. This is a general case observed from many
different experiences. This means that the PID controller
tuning parameters which are determined by each point taken
from the corresponding stability boundary locus will make
the system stable.

02 transfer

modelled as model of

6- AN

" IFOPDT model

actual system

q ! ! ! I
-1 0 1 2 3 4 5 6 7

(KK )TT)
Fig. 7. Stability regions for actual system and IFOPDT model
transfer function of example 2.
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So, the stability region obtained in Fig. 5 for the value of
r =0.25, which is the closest value to the normalized dead
time value of the IFOPDT model transfer function, is used to
determine the PID controller tuning parameters. Table 2
summarizes the results for this example. In this example, the
controller gain K, =1.106 in all cases, as K =0.843,

T =1.072 . In Fig. 8, unit step responses are given for the
determined PID controller parameter values. Again, the
validity of the design approach has been verified.

Table 2. Some calculated tuning parameters for example 2

Calculated
Selected points tuning
parameters
case

KK (T°/T))| KK.T, T, T,
a 0.5 1 2.144 1.072
b 1.5 3 0.714 | 3.216
c 2 4.2 0.536 | 4.502
d 2.5 4.5 0.428 | 4.824
e 1 5 1.072 5.36
f 3.5 52 0.306 | 5.574

casea

casee casec

Output

0 | | | | I
0 10 20 30 40 50 60 70 80 90 100

Time

Fig. 8. Step input responses for determined PID controller
parameter values for example 2.

3.3 Example 3: In this example, another high order transfer
function of G(s) =e " /s(s+1)(0.55 +1)(0.25 +1(0.1s +1) is
studied. This IFOPDT model
G,(s)=e ""* /s(1.756s+1) by using relay feedback
identification method of Kaya and Atherton (2001). IFOPDT
model has the normalized dead time of = = 0.6395 . In Fig. 5,
the stability region for the normalized dead time of r = 0.75
can be used to determine all stabilizing PID controllers. The
points and corresponding PID controller parameters taken
from the inside of stability region corresponding to the
normalized dead time of r =0.6395 are given in Table 3.

was obtained as

Since X =1 and 7 =1.756 for this example, hence the
controller gain K, = 0.569 in all cases. Fig. 9 illustrates unit

step responses for designed PID controllers. The validity of
the approach has been confirmed once again.

Table 3. Some calculated tuning parameters for example 3

Calculated
Selected points tuning

case parameters

KK, (T°/T)) kKL, 1 T,
a 0.25 0.5 7.024 | 0.878
b 0.6 1.1 2926 | 1.931
c 0.4 22 439 | 3.863
d 0.9 2 1.951 | 3.512
e 1.2 1.7 1.463 | 2.985
f 1.5 2.5 1.17 4.39

Output
T

0.8

0.6

04F-

casea
0.2~ 1

0 | | | |
0 10 20 30 40 50 60 70 80 90 100

Time
Fig. 9. Step input responses for determined PID controller
parameter values for example 3.

4. CONCLUSIONS

In this study, a generalized method has been given for
determining all stabilizing PID controllers for stability of
integrating plus time delay processes. In order to implement
the method, the IFOPDT model of the actual process transfer
function has to be obtained. If the actual process and the
IFOPDT model transfer functions matches exactly, then
obtained stability regions will give exact solutions. If the
actual process transfer function is a high-order transfer one,
there will be a small mismatch between the stability regions
obtained from the actual model transfer functions, but this
will not cause any serious problem because it has been shown
that the stability boundary locus of the IFOPDT model
process transfer function always lies inside the stability
boundary locus of the actual transfer function. Thus, the
proposed approach removes the necessity of redrawing the
stability boundary locus each time as the process transfer
function changes.

928
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