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Abstract: This paper deals with the use of a load acceleration feedback to overcome
fundamental performance limitations of elastic servo drive systems that occur when employing
a standard PI velocity controller. Structured H-infinity optimization approach is used to develop
an optimal control strategy consisting of a PI controller and a static acceleration feedback.
Qualitative and quantitative analysis of potential benefits for the case of a two-mass system is
provided. Effects of higher resonance modes is studied as well. Experimental results demonstrate
the application of the proposed methodology to a flexible arm manipulator.
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1. INTRODUCTION

Modern motion control systems rely on properly adjusted
velocity and position feedback loops. Their accurate tun-
ing is essential when dealing with stringent performance
requirements. Although several advanced control strate-
gies were proposed, the conventional cascade PID scheme
still remains prevalent in industrial servo drives thanks to
its simplicity, low number of parameters and fair perfor-
mance in most situations.

One of the limiting factors which affect the achievable
quality of control is a mechanical compliance of a driven
load. Proper adjustment of the feedback control is neces-
sary in order to cope with unwanted transient or residual
oscillations. A key issue of elastic servo systems is the
absence of a direct information about the behavior of the
driven load. Only a motor-side feedback is often available
making the stabilization of an oscillatory load difficult.
This can be overcome by means of an observer combined
with a proper feedback (Ji and Sul (1995),Katsura and
Ohnishi (2007),Thomsen et al. (2011)). However, such
solutions depend heavily on the fidelity of the plant model.
Another option is to install an additional instrumenta-
tion providing a complementary feedback information (Sz-
abat and Orlowska-Kowalska (2007)). A load attached
accelerometer may be a suitable choice for a wide range
of applications due to the low price, small dimensions
and simple mounting. Successful applications of the ac-
celeration feedback were reported for robotic manipula-
tors (Axelsson et al. (2014), Nam et al. (2016)), machine
tools feed drives (Zirn and Jaeger (2010), de Argandona
et al. (2005)) or linear positioning stages (Watanabe et al.
(2016)). However, the suggested control strategies require
implementation of a customized algorithm directly in the
drive firmware which cannot be done in industrial appli-
cations with the off-the-shelf hardware.
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Fig. 1. Lumped multi-mass elastic drive system model

A natural effort is therefore to merge the benefits of using
the auxiliary information with the simplicity of conven-
tional PID control available in commercial drives. By in-
troducing the auxiliary feedback, whether it is a motor ac-
celeration (Zhang (2000); Goubej (2016)) or a motor-load
reaction torque (Yuki et al. (1993); Katsura and Ohnishi
(2007)), it is possible to shape the resonance ratio of the
controlled system and achieve better performance. For the
aforementioned reasons (low cost and small dimensions),
it is again advantageous to use a MEMS accelerometer
attached to the load. This acceleration feedback has a com-
mon features with the reaction torque feedback, as shown
in Zhang (1999).

The paper is organised as follows. We begin with a def-
inition of multi-mass flexible system models followed by
a review of the achievable closed-loop performance valid
for the PID controllers. Section 3 provides a brief summary
of possible auxiliary feedbacks that can be used in servo-
drive control. Section 4 is dedicated to a 𝐻∞ optimal
control. Analysis of reference tracking and disturbance re-
jection performance reveals potential benefits of the load-
side acceleration feedback. The presence of a higher reso-
nance mode and its impact on the closed-loop behaviour
is also analyzed. The experimental results in Section 5
demonstrate the applicability of the proposed approach
to a distributed parameter elastic system with multiple
flexible modes.
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2. MATHEMATICAL MODEL

The starting point is a generic lumped-parameter model
of a flexible mechanical system schematically illustrated
in Figure 1. The motor and load dynamics is governed by
transfer functions

𝑃m
n =

𝜔m(𝑠)

𝑇m(𝑠)
=

𝐾

𝑠

n∏︁
i=1

𝑠2 + 2𝜉zi𝜔zi𝑠+ 𝜔2
zi

𝑠2 + 2𝜉pi𝜔pi𝑠+ 𝜔2
pi

, (1)

𝑃 l
n =

𝜔l(𝑠)

𝑇m(𝑠)
=

𝐾

𝑠

n∏︁
i=1

2𝜉zi𝜔zi𝑠+ 𝜔2
zi

𝑠2 + 2𝜉pi𝜔pi𝑠+ 𝜔2
pi

,

where 𝐾 is an integration gain of the system, 𝜉pi and 𝜔pi

are the damping factors and natural frequencies of the
complex poles belonging to the i-th resonance mode and
𝜉zi and 𝜔zi are damping factors and natural frequencies of
the i-th anti-resonance, 𝜔m(𝑡) = L −1 {𝜔m(𝑠)} is a motor-
side velocity, 𝜔l(𝑡) = L −1 {𝜔l(𝑠)} is a load-side velocity
and 𝑇m(𝑡) = L −1 {𝑇m(𝑠)} is a motor torque.

A two-mass system is obtained as a special case for 𝑛 = 1
leading to transfer functions

Pm2 (s) =
ωm(s)

Tm(s)
=

Jls
2 +Kvs+Kk

s (JmJls2 +Kv(Jm + Jl)s+Kk(Jm + Jl))
=

=
K1

s
·
s2 + 2ξzωzs+ ω2

z

s2 + 2ξpωps+ ω2
p

, (2)

P l2(s) =
ωl(s)

Tm(s)
=

Kvs+Kk

s (JmJls2 +Kv(Jm + Jl)s+Kk(Jm + Jl))
=

=
K2

s
·

s+ ωz
2ξz

s2 + 2ξpωps+ ω2
p

, (3)

where 𝐽m, 𝐽l are the moments of inertia of motor or load
respectively, 𝐾k and 𝐾v denote the spring stiffness and
damping. The corresponding gains, natural frequencies
and damping factors can be expressed by means of the
plant parameters as follows

K1 =
ω2
p

(Jm + Jl)ω2
z

, ωp =

√︂
Kk(Jm + Jl)

JmJl
, ωz =

√︂
Kk

Jl
,

K2 =
2ξzω2

p

Jm + Jl
, ξp =

√︂
K2
v(Jm + Jl)

4KkJmJl
, ξz =

√︂
K2
v

4KkJl
. (4)

Next, we assume a PI controller with the feedback intro-
duced from the motor velocity

𝐶PI(𝑠) =
𝑇m(𝑠)

𝐸(𝑠)
=

𝐾p𝑠+𝐾i

𝑠
, (5)

where 𝐾p and 𝐾i are the controller gains and 𝑒(𝑡) =
L −1 {𝐸(𝑠)} is the tracking error. The block diagram of
this loop is shown in Figure 2. The damping terms 𝐾v

were omitted for the sake of clarity. However, they are
considered in the following analysis.

As shown in Zhang (2000) and Goubej (2016), the fun-
damental property of the plant influencing the closed-
loop performance is a so-called resonance ratio 𝑟 or a
corresponding drive to load inertia ratio 𝑅 given as follows

𝑟 =
𝜔p

𝜔z
=

√︂
1 +

𝐽l
𝐽m

=
√
1 +𝑅, 𝑅 =

𝐽l
𝐽m

. (6)

Briefly, if the resonance ratio is small, the closed-loop re-
sponse cannot be sufficiently damped. On the other hand,
high resonance ratio leads to lower achievable bandwidth
and excessive feedback gains. The best performance can
be achieved if the resonance ratio is 𝑟 ≈ 2.
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−

Tl(t)

−

Fig. 2. Closed-loop block diagram

∑ ∑ 1
Jms

∑ Kk
s

∑ 1
Jls

Ka
Jl

uPI(t) + Tm(t) + ωm(t)
+

Ts(t) + ωl(t)−
−

Tl(t)

−−

Fig. 3. Acceleration feedback diagram

For a general closed-loop analysis, it is further preferable
to normalize the plant both in gain and time without loss
of generality. This leads to the plant dynamics

Pmn2(s) =
r2

s
·
s2 + 2ξzs+ 1

s2 + 2ξzr2s+ r2
, P ln2(s) =

r2

s
·

2ξzs+ 1

s2 + 2ξzr2s+ r2
. (7)

Similar approach is followed for the case of three-mass
system which results to the normalized transfer functions

Pmn3(s) =
r21r

2
3

s
·

(s2 + 2ξz1s+ 1)(s2 + 2ξz2r1r2s+ r21r
2
2)

(s2 + 2ξp1r1s+ r21)(s
2 + 2ξp2r1r2r3s+ r21r

2
2r

2
3)
,

P ln3(s) =
r21r

2
3

s
·

(2ξz1s+ 1)(2ξz2r1r2s+ r21r
2
2)

(s2 + 2ξp1r1s+ r21)(s
2 + 2ξp2r1r2r3s+ r21r

2
2r

2
3)
,

(8)

where 𝑟1 is the resonance ratio of the first flexible mode,
𝑟2 is the second anti-resonance to first resonance frequency
ratio and 𝑟3 is the resonance ratio of the second flexible
mode.

3. AUXILIARY FEEDBACK

Several papers outline some possibilities for introducing
auxiliary feedback in order to virtually change the reso-
nance ratio to enhance the closed-loop performance achiev-
able with a standard PI controller (Zhang (1999)). One of
the options (Goubej (2016)) is the utilization of the deriva-
tive action of the PID controller. However, this often re-
quires a double differentiation of the motor position signal
leading to a significant amplification of a high-frequency
noise. Another alternative is to use the reaction torque
feedback 𝑇s. Nevertheless, this requires an expensive and
bulky torque cell to be mounted in the drive system.

With the advances in the field of MEMS sensors, usage
of an inexpensive load-attached accelerometer seems to
be advantageous. The block diagram of this approach
is shown in Figure 3 (𝑢PI(𝑡) denotes the output of the
feedback controller). Such a structure has very similar
properties to the torque sensor structure, it only differs
in load disturbance (𝑇l) rejection.

If we now investigate the acceleration closed-loop dynam-
ics we obtain

s · ωl(s)
uPI(s)

=
s · P l(s)

1 +Ka · s · P l(s)
=

K1(2ξzωzs+ ω2
z)

s2 + (. . . )s+KaK1ω2
z + ω2

p

, (9)
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which implies that we can arbitrarily set the resonance
ratio of this loop by adjusting the acceleration feedback
gain

𝐾a =
𝑟w2 − 𝑟2

𝐾1
, (10)

where 𝑟w is the desired resonance ratio we want to achieve.
We can conclude that we are able to virtually (from the PI
controller perspective) change the resonance ratio of the
plant by employing the acceleration feedback.

4. 𝐻∞ OPTIMAL CONTROL AND ACHIEVABLE
PERFORMANCE ANALYSIS

∑ CPI(s) ∑ P(s)
W2(s)

W1(s)
Ka

W3(s)
r(t) + e(t) + u(t)

ωm(t)
−

ω̇l(t)
−

z1(t)

z2(t)

z3(t)

Fig. 4. Weighting scheme for the 𝐻∞ controller synthesis

A weighting scheme from the Figure 4 is introduced for
the single-input two-output plant

P(s) =
[︀
𝑠 · 𝑃 l

n2(𝑠) 𝑃m
n2(𝑠)

]︀T
, (11)

formulating an optimal control design problem for the
derivation of the PI controller parameters. Conventional
control scheme without the acceleration feedback (𝐾a = 0)
was considered for a first batch of experiments. The goal
is to minimize the impact of the generalized input (𝑟(𝑡))
to penalized outputs (𝑧1(𝑡),𝑧2(𝑡)) in the sense of the 𝐻∞
norm of the closed-loop system

‖𝐻‖∞ =

⃦⃦⃦⃦[︂
𝑊1(𝑠)𝑆

m
2 (𝑠)

𝑊2(𝑠) · 𝑠 · 𝑇 l
2(𝑠)

]︂⃦⃦⃦⃦
∞

≤ 𝛾, (12)

where 𝑆m
2 (𝑠) is the motor sensitivity function, 𝑇 l

2(𝑠) is the
transfer function from the setpoint 𝑟(𝑡) to the load-side
velocity 𝜔l(𝑡) given by relations

Sm2 (s) =
1

1 + CPI(s)P
m
n2(s)

, T l2(s) = (1− Sm2 (s))⏟  ⏞  
Tm
2

(s)

P ln2(s)

Pmn2(s)
. (13)

Following weighting functions which allow effective shap-
ing of the corresponding closed-loop sensitivity functions
are proposed

𝑊1(𝑠) =
1

Msm
𝑠+ 𝜔1

𝑠+ ω1

A

,𝑊2(𝑠) =
1

𝑠 ·𝑀tl
. (14)

The parameter 𝐴 affects a low-frequency disturbance re-
jection. The value 𝑀sm specifies a desired maximum sen-
sitivity peak which is a direct measure of the robustness
in stability. The cut-off frequency determined by 𝜔1 is re-
lated to the closed-loop bandwidth. The parameter 𝑀tl is
essentially the level of the load-side vibrations suppression.

The formulated structured 𝐻∞ optimization was solved
using the hinfstruct routine of the Matlab Robust Con-
trol Toolbox. Figure 5 shows the closed-loop performance
achieved with the optimal controller for the weight param-
eters 𝑀sm = 𝑀tl = 1.5, 𝐴 = 1000 and varying resonance
ratio 𝑟 of the normalized system. The cut-off frequency 𝜔1

was chosen as the highest possible value which leads to
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Fig. 5. Closed-loop performance as a function of the
resonance ratio

a controller fulfilling the design requirements (𝛾 ≤ 1). The
damping factor of normalized system was set to 𝜉z = 0.01.
The displayed bandwidth of 𝑇 l

2(𝑠) is defined in the stan-
dard -3dB sense⃒⃒

𝑇 l
2(𝑗𝑤)

⃒⃒
> −3𝑑𝐵 ∀𝜔 ∈ < 0, 𝜔bw > . (15)

A dependency of the step response settling time with
respect to the resonance ratio is shown as well. The settling
time 𝑡st is defined for the 2.5% steady state error tolerance⃒⃒

𝑔l(𝑡)− 𝑇 l
2(0)

⃒⃒
< 0.025 · 𝑇 l

2(0) ∀𝑡 ∈ < 𝑡st,∞ >, (16)

𝑔l(𝑡) = L −1
{︂
𝑇 l
2(𝑠)

𝑠

}︂
.

A minimum achieved damping factor of the closed-loop
characteristic polynomial is also shown in Figure 5 to
demonstrate a disturbance rejection performance. If we
denote 𝑝i as the i-th root of the characteristic polynomial,
we can define a minimum damping factor as

𝜉min = min
i

{− cos(∠𝑝i)} . (17)

It can be seen that even the optimal controller is unable
to provide a sufficient damping for low resonance ratios
whereas high-resonance ratios lead to sluggish closed-loop
response. These results are in coincidence with former
analysis provided in (Zhang (2000); Goubej (2016)) using
a modal control approach.

A second batch of experiments was performed for the ac-
celeration feedback enhanced compensator. The weighting
scheme has to be adjusted since the weights (14) tend to
produce undesirable high gains. Therefore, a third gener-
alized output 𝑧3(𝑡) is introduced leading to the search for
the controller gains {𝐾p,𝐾i,𝐾a} by minimizing

‖𝐻‖∞ =

⃦⃦⃦⃦
⃦⃦
⎡⎣ 𝑊1(𝑠)𝑆

ma
2 (𝑠)

𝑊2(𝑠) · 𝑠 · 𝑇 la
2 (𝑠)

𝑊3(𝑠)𝑇
ma
2 (𝑠)

⎤⎦⃦⃦⃦⃦⃦⃦
∞

≤ 𝛾, (18)

where 𝑆ma
2 (𝑠), 𝑇 la

2 (𝑠) are the velocity sensitivity functions
with the inner acceleration closed-loop defined in a similar
way to (13), 𝑇ma

2 (𝑠) = (1−𝑆ma
2 (𝑠)) is the transfer function

from the setpoint 𝑟(𝑡) to the motor-side velocity 𝜔m(𝑡).

The weights 𝑊1(𝑠) and 𝑊2(𝑠) remain unchanged and the
weight 𝑊3(𝑠) penalizing the control effort is chosen as

𝑊3(𝑠) =
𝑠+ ω3

Mtm

1
A𝑠+ 𝜔3

. (19)
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If we now suitably move both cut-off frequencies 𝜔1 and
𝜔3 against each other until we reach 𝛾 ≈ 1, we find that
the optimal acceleration gain 𝐾a smoothly converges to
a value which shifts the virtual resonance ratio to the
value of 𝑟w2 ≈ 2 (see equations (9),(10)). This pattern
is observed for a wide variety of resonance ratio values of
the controlled system. Therefore, the acceleration feedback
allows to effectively achieve both sufficient damping and
fast reference tracking by virtually shifting the undesirable
resonance ratio to its optimal value. We can conclude that
even in terms of the optimal control it is acceptable to
tune the acceleration gain and the PI controller parameters
separately allowing to recover the closed-loop performance
achievable for a well behaved system with 𝑟 ≈ 2 (Fig. 5).

4.1 Effects of a higher resonance mode

A fundamental question is whether the obtained results
hold also for systems with two or more flexible modes
and what amount of performance degradation can be
expected. This was studied in terms of the optimization
problem defined by Figure 4 with the plant formed by
the normalized three-mass system (8). The acceleration
feedback 𝐾a was tuned to its optimal value by setting
𝑟w = 2 in (10) and the PI controller was enhanced by
a second-order low-pass Butterworth filter with a cut-
off frequency 𝜔lp to improve the high-frequency roll-off
allowing a gain-stabilization of the second mode

P(s) =
[︀
𝑠 · 𝑃 l

n3(𝑠) 𝑃m
n3(𝑠)

]︀T
, (20)

𝐶PI−LP (𝑠) =
𝐾𝑝 · 𝑠+𝐾i

𝑠
·

𝜔2
lp

𝑠2 + 2 · 0.7071𝜔lp𝑠+ 𝜔2
lp

.

Representative values of the plant damping factors were
selected (𝜉z1 = 𝜉z2 = 0.01, 𝜉p1 = 𝜉p2 = 0.01 · 𝑟1). The
closed-loop performance criterion is given as

‖𝐻‖∞ =

⃦⃦⃦⃦[︂
𝑊1(𝑠)𝑆

ma
3 (𝑠)

𝑊2(𝑠) · 𝑠 · 𝑇 la
3 (𝑠)

]︂⃦⃦⃦⃦
∞

≤ 𝛾, (21)

where 𝑆m
3 (𝑠) and 𝑇 l

3(𝑠) are the sensitivity functions defined
analogically to the two-mass system case (with the inner
acceleration loop). The weights 𝑊1(𝑠),𝑊2(𝑠) were fixed
to the values used for the two-mass system analysis in the
previous section to allow a direct comparison in terms of
the achievable 𝛾.

Figure 6 shows the relation of the minimum criterion cost
𝛾 depending on the 𝑟2 ratio for different values of 𝑟1 and
𝑟3. It is observed that the performance degradation can be
significant with the second resonance mode approaching
the first one. The sensitivity to the higher mode increases
for low values of the first resonance ratio (𝑟1 << 2)
and depends also on the second mode ratio 𝑟3. We can
conclude that the technique of virtual resonance ratio
shaping in combination with the PI controller can be
successfully used even for three-mass systems, provided
that the second resonance mode is far enough from the
first one. Otherwise, the closed-loop bandwidth has to be
reduced or a more complex control strategy is needed.
Systems with more than two dominant resonances can be
treated in the same manner provided that the feedback
controller achieves a sufficient high-frequency roll-off to
allow their gain stabilization. This is demonstrated in the
following section.
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Fig. 6. Criterion cost as a function of 𝑟2 for different values
of 𝑟1 and 𝑟3

Fig. 7. Mechanical setup used for the experiments

5. EXPERIMENTAL RESULTS

The proposed control design methodology was experimen-
tally verified by means of a mechanical setup consisting of
an electrical drive and a flexible mechanical arm (Fig. 7).
The system is driven by a 500W permanent magnets syn-
chronous servomotor controlled by a TGDrives frequency
inverter which realizes a current control loop. Velocity
and position control is implemented in our own developed
industrial computer based on Altera Cyclone V System-
on-Chip containing two ARM Cortex-A9 CPU cores and
a programmable FPGA. The control platform provides
real-time EtherCAT communication with the drive with
a 2kHz update rate and performs an A/D conversion of
the analog signal from the load-attached accelerometer
(Kistler piezoceramic, ±50g, 5kHz bandwidth). The ARM
cores run a Linux operating system with RT-PREEMT ex-
tension. The control algorithms are implemented in REX
control system (Balda et al. (2005)).

The flexible arm setup proved to be an excellent bench-
mark problem for various vibration control methods. It is
a distributed parameter system which can exhibit oscil-
latory behavior with diverse dynamic characteristics and
multiple resonance modes allowing emulation of many
practical motion control problems. Analytic model of
the system can be derived by using a Euler-Bernoulli
beam theory (Bernzen (1999)). The system dynamics of
a pinned-free flexible beam can be modeled by a partial
differential equation
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𝜕2

𝜕𝑥2
(𝐸𝐼(𝑥)

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑥2
) + 𝜇

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
= 𝑓(𝑥, 𝑡), (22)

where 𝐸𝐼 is flexural stiffness, 𝜇 is distributed mass,
𝑦(𝑥, 𝑡) is flexible beam deflection and 𝑓(𝑥, 𝑡) is the sum
of all external forces. The equation can be solved by the
separation of variables method. Truncation of the high-
frequency dynamics by assuming a limited number of
orthogonal modes leads to the same model structure as
in the case of lumped multi-mass system (1), although the
tip dynamics may contain non-minimum phase zeros.

Parameters of the dynamic model were acquired from
the experimental identification. A wide-band excitation
signal in the form of a pseudo-random binary sequence
was injected as a desired motor current. The response
of the motor velocity and load acceleration was collected
for the subsequent model fitting. A nonparametric esti-
mate of the plant frequency response was acquired by
means of the modified Welch method of weighted aver-
aged periodograms (Barbe et al. (2010)). The complex
frequency response data were approximated by rational
transfer functions by forming a nonlinear least squares
minimization of criterion function

𝐽 =

M∑︁
k=0

|𝑃 (𝑗𝜔k)− 𝑃 (𝑗𝜔k)|2, (23)

with respect to the coefficients of the model 𝑃 (𝑗𝜔) and

frequency response points 𝑃 (𝑗𝜔k), 𝑘 = 0..𝑀 of the non-
parametric model from the previous step. The identified
transfer functions for the motor velocity and load acceler-
ation are

𝑃m
v (𝑠) =

𝜔m(𝑠)

𝑇m(𝑠)
=

𝑛𝑢𝑚1(𝑠)

𝑑𝑒𝑛1(𝑠)
e−0.002s,

𝑃 l
a(𝑠) =

𝜀l(𝑠)

𝑇m(𝑠)
=

𝑛𝑢𝑚2(𝑠)

𝑑𝑒𝑛2(𝑠)
e−0.002s, (24)

with numerator and denominator polynomials coefficients
given by the vectors

cn1 = [8.89e7, 1.02e10, 2.31e13, 1.53e14, 1.54e17],

cd1 = [1, 4880, 9.54e6, 2.85e10, 1.67e12, 3.45e14, 9.638e15],

cn2 = [1.55e22,−3.06e25, 6e28,−1.11e32, 5.26e34,−9.13e37, 7.56e39,
− 1.09e43, 8.63e45,−8.83e46, 0],

cd2 = [1, 7197, 4.32e7, 1.72e11, 5.82e14, 1.35e18, 3.17e21, 4.09e24, 7.35e27,

4.83e30, 6.63e33, 1.83e36, 1.58e39, 1.83e41, 1.99e43, 1.26e45, 2.36e46].

(25)

The result of the model fitting is shown in Figure 8
which displays the amplitude frequency response of the
nonparametric FRF data and parametric transfer function
models. Five dominant resonances are observed in the
tip dynamics. The first four of them correspond to the
lateral and torsional bending modes of the arm whereas
the last one is caused by the elasticity of the motor-arm
coupling. Only two modes are well observable from the
motor side output. There is an additional dynamics caused
by a communication delay, current loop lag and analog
filtering of the accelerometer signal.

Two different position control schemes were compared to
evaluate the potential advantage of the acceleration feed-
back. The first controller comprised of the traditional P-PI
cascade scheme with a second order Butterworth low-pass
filter included in the inner velocity loop to provide better
high-frequency roll-off. For the second control scheme,
the static acceleration feedback was added to shift the
resonance ratio of the first mode to the optimal value of
𝑟 = 2. The optimal velocity loop parameters 𝐾p,𝐾i, 𝜔lp

were tuned using the structured 𝐻∞ synthesis with the
weighting scheme presented in the previous section (Fig.
4). The position loop gain 𝐾p

p was derived using loop-
shaping method aiming at highest achievable bandwidth
without an overshoot in the step response and sufficient
gain and phase stability margins.

The weights and controller gains for the conventional
cascade scheme are

W1(s) =
0.67s+ 28.32

s+ 0.028
, W2 = 0.011, Ka = 0 (26)

Kp = 0.055, Ki = 1.86, ωlp = 272Hz, Kp
p = 8.14.

The second controller weights and resulting parameters are
given as

W1(s) =
0.67s+ 28.32

s+ 0.028
, W2 = 0.0094, Ka = 2.5e− 3 (27)

Kp = 0.173, Ki = 1.76, ωlp = 133Hz, Kp
p = 8.2.

Figure 9 shows the comparison of the tracking performance
using both control schemes. The motor was commanded
to perform a step point-to-point movement. Although the
motor side responses looks similar, load side oscillations
are observed when using the conventional controller due to
the low resonance ratio of the first mode. The acceleration
feedback provides much better vibration damping. This is
confirmed also by a disturbance rejection test shown in the
bottom plot of Fig. 10 where a short pulse of torque (1Nm
amplitude, 20ms duration) was injected by the motor
during standstill. The improved damping characteristics
can also be observed in the identified frequency response
from the motor side disturbance to the tip acceleration
(Fig. 10 top). The acceleration feedback allows about 12dB
better attenuation of the first two flexible modes at the
cost of slight amplification of the 3𝑟𝑑 and 5𝑡ℎ resonance.
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6. CONCLUSION

The presented results provide an insight on how to employ
a complementary load-side acceleration feedback. Closed
loop performance of the conventional cascade PID con-
trol can be substantially improved. Even a simple static
feedback can remove inherent limitations caused by the
improper resonance ratio of the first flexible mode. The
proposed structured 𝐻∞ optimization can be replaced by
an arbitrary design method for PID controllers preceded
by the virtual correction of the resonance ratio.

Future research should address potential improvements of
dynamic acceleration feedback. Benefits of more complex
feedback compensators will also be investigated.
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