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Abstract: In this paper we present a study of the appearance of limit cycles in event-based
PID control systems. Our approach is based on the extension of the Tsypkin method, which
has been widely used to study the relay control systems. A new margin has been obtained to
measure the robustness to limit cycles of continuous controllers when applied on event based
control loops. The margin has been calculated to characterize some well known PID controllers
tuning methods applied to the control of FOPTD systems with SSOD sampling strategy.
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1. INTRODUCTION

Event based PID (EBPID) is a valuable control scheme
that conjugates the well known reliability of the PID
controllers with the necessity of reducing the data trans-
mission in distributed control systems. The reduction of
data traffic minimizes the loss of packages and delays
introduced by the network. Furthermore, in the case of
wireless networks, the reduction of transmissions increases
the lifetime of batteries of self-powered remote sensors
(Feeney and Nilsson (2001)).

During the last years some works have been focused on
developing new tuning methods for EBPID. In (Beschi
et al. (2014)) the design of PI controllers was addressed
using a Symmetric Send on Delta (SSOD) sampling strat-
egy for the control of first-order systems with delay. In
(Romero et al. (2014)) the authors gave a simple rule for
tuning SSOD based PI controllers which were derived by
applying the Describing Function (DF) technique. Follow-
ing the same approach, a complete tuning methodology
for this kind of controllers is proposed in (Romero-Pérez
and Sanchis (2016)). The extension of the results presented
in the before mentioned works to other sampling strategy
was presented in (Romero-Pérez and Llopis (2017)), were
tuning rules for PI and PID are proposed not only for
SSOD but also for Regular Quantization (RQ) sampling.

The main advantage of using the DF is that it allows
to build a bridge between the continuous and the event
based worlds. Hence, some concepts traditionally used for
the analysis and design of continuous control systems in
the frequency field can be extended to the study of event-
based control systems (EBCS). An example of this are
the robustness margins to avoid limit cycle presented in
(Romero-Pérez and Llopis (2017)), which are given in
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terms of the phase and gain margin. It is well known,
however, that the validity of the DF depends on the
filtering properties of the open loop transfer function:
only under certain filtering conditions the higher orders
harmonics can be neglected and the DF can be successfully
applied. Therefore, low order models, such as first or
second order plus time delay (FOPTD,SOPTD), which
are commonly used to describe actual industrial processes,
are excluded from this approach, and new methods are
required if frequency response concepts are wanted to be
used.

In this paper we propose a new robustness measure to
prevent limit cycles in SSOD based control systems. Con-
versely to those presented in (Romero-Pérez and Llopis
(2017)), the robustness margins presented here are valid
for low order systems. Our proposal is based on the Tsyp-
kin’s method (Tsypkin (1984)), which has been widely
used to study the relay control systems. The new margins
obtained here are applied to study the relative stability
to stable oscillations in SSOD-PID control systems when
well settled continuous time tuning methods are used for
tuning the PID. Concretely we have considered the tuning
rules proposed in (Ziegler and Nichols (1942)), (Cohen
and Coon (1953)) and (Åström and Hägglund (2004)) for
FOPTD systems. The results would shed light on the va-
lidity of these methods for tunning SSOD-PID controllers.

2. PROBLEM STATEMENT

Consider the control system shown in Figure 1, which
was proposed in (Beschi et al. (2012)), where C(s) and
G(s) are the controller and the process transfer functions
respectively, yr is the reference signal to be tracked, y
is the controlled output, and p is the disturbance input.
It is supposed that the controller is located near the
actuator and the sensor sends measurements of process
output y (or more precisely of the tracking error e) to
the controller through a communication network using the
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SSOD strategy. The ZOH block keeps in ē the last sent
value of process output e∗ until a new value is transmitted
by the SSOD block.
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Fig. 1. Networked control system with SSOD sampling
strategy. SSOD-C(s) architecture.

It is well known that this kind of control loops may have
problems of limit cycles (permanent non vanishing oscil-
lations) due to the nonlinearity introduced by the SSOD
sampling. The existence of a stable limit cycle depends
on the process and the controller. As proved in Romero
et al. (2014), a valuable tool for predicting (and avoiding)
those limit cycles is the DF technique, whose results are
not exact as it relies on the process perfect filtering of
the higher order harmonics of the periodic control input
signal, resulting in a perfect sinusoid at the output. In fact,
there are no processes that produce a perfect filtering, but
if the higher order harmonics are reasonably attenuated,
the describing function approach can still be used as an
approximation. However, for systems with poor filtering
response, methods which consider the effect of higher har-
monics must be used.

3. TSYPKIN’S METHOD

In order to predict more accurately the existence of limit
cycles (and to give some tips to avoid them), we propose
a new approach based on the Tsypkin’s method (Tsypkin
(1984)), which is valid independently of the filtering char-
acteristics of the process transfer function. This approach
is especially interesting for systems of low order (e.g.
FOPTD), for which the DF technique is very inaccurate
and can not be used to predict the limit cycles.

The control loop in Figure 1 can be represented as the non-
linear system shown in Figure 2, which could be considered
a generalization of a relay control system.
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Fig. 2. Non-linear equivalent system to the control systems
with SSOD sampling strategy in Figure 1.

According to the Tsypkin’s method, the general conditions
for oscillation in this system, which are represented in
Figure 3 when the rise edge of ē occurs in t = 0, are given
by the equations (1a)-(1d).

e
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Fig. 3. Oscillations condition in the SSOD-C(s) control
systems.
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Applying the Fourier transform to signal e and after some
calculations, equations (1a)-(1d) can be written in terms
of the real and imaginary parts of the open loop transfer
function Gol(jω) = exp(−tdjω)C(jω)G(jω) as follows:

∞∑
n=1,3..

1

n
sin
(nπρ

2

)
cos
(nπρ

2

)
<{Gol(njωo)}+

π

8
= 0

(2a)

4ω0

π

∞∑
n=1,3..

sin2
(nπρ

2

)
<{Gol(njωo)}−

4ω0

π

∞∑
n=1,3..

sin
(nπρ

2

)
cos
(nπρ

2

)
={Gol(njωo)}−

1

2
lim
s→∞

sGol(s) < 0 (2b)

∞∑
n=1,3..

1

n
sin2

(nπρ
2

)
={Gol(njωo)}+

π

8
= 0 (2c)

4ω0

π

∞∑
n=1,3..

sin2
(nπρ

2

)
<{Gol(njωo)}+

4ω0

π

∞∑
n=1,3..

sin
(nπρ

2

)
cos
(nπρ

2

)
={Gol(njωo)}

− 1

2
lim
s→∞

sGol(s) < 0 (2d)

It is worth noticing that these conditions are sufficient and
necessary for the existence of limit cycles. Consequently, if
any of the previous equations is not fulfilled, then steady
state oscillations do not appear in the system. As can
be noted, the equality conditions for oscillation given by
equations (2a) and (2c) are simpler than those given by
equations (2b) and (2d). Therefore, taking into account
that the objective when tuning a PID controller is to avoid
limit cycles, the equations (2a) and (2c) can be used to
define a new robustness index to prevent oscillations.

The evaluation of left members of equations (2a) and (2c)
in ranges of ω and ρ define a locus in the plane, which
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we named the Tsypkin Locus (TL). If the point [0, 0] is
contained in one of the trajectories defined by the TL,
and the conditions (2b) and (2d) are fulfilled, the system
will oscillate.

Instead of representing the TL in a plane defined by
conditions (2a) and (2c), an alternative representation in
the Nyquist plot is presented in the next section, which
can sound more familiar in the context of control systems
analysis and design.

3.1 Tsypkin’s Bands

In order to represent the TL together with the Nyquist plot
of Gol, the equality conditions (equations (2a) and (2c))
are transformed to equations (3) and (4), which determine
the set of points in which the system will oscillate with
a given frequency (ωo) and pulse amplitude (ρ). Detailed
calculation has been omitted for the sake of brevity.
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1
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The region in the Nyquist plot is obtained by evaluating
the right hand members of these expressions for values of
ρ and ω. According to Figure 3 the values of ρ must lay
between 0 and 1. The set of points obtained are organized
in the form of bands that we call Tsypkin’s bands. The
band is formed by branches, each one of which corresponds
to a frequency value and ρ ∈]0, 1[. Regarding the range
of ω, it has been considered from 0 to the gain margin
crossover frequency (where phase crosses -180 degrees).
This is a reasonable choice because intersections between
the Tsypkin’s bands and the Gol(jω) are more probable
to take place for this range of frequency, that is, in the
lower-left quadrant.

Two examples of the Tsypkin’s bands are given in Figures
4 and 5 for FOPTD systems with time delays of 1.2 sec
and 0.4 sec respectively. Unitary time constant and static
gain have been considered. In both cases the controller has
been tuned with the Ziegler-Nichols method. The branch
that belong to each frequency is represented in a different
color. In order to make the figure more readable, a limited
number of branches has been represented.

According to the meaning of this branches, a system will
oscillate if a point of its open loop transfer function in
the Nyquist plot also belongs to the Tsypkin branch of its
frequency. In the figures this means that, in order for the
system to oscillate, a point of a specific color must also
belong to the branch of its color.

Thus, it can be seen in Figure 4 that this system will not
oscillate at the frequencies where the Tsypkin branches
have been evaluated. Additionally, in this figure, we have
represented graphically a new measure of robustness to
oscillations, that we named Tsypkin’s Margin MT , which
is the minimum distance between the points of Gol and
their respective Tsypkin branch.

Fig. 4. Tsypkin band of a non-oscillating system in Nyquist
diagram.

Fig. 5. Tsypkin band of an oscillating system in Nyquist
diagram.

Fig. 6. Comparison between the Tsypkin method and DF
methods in predicting oscillations.

On the other hand, in Figure 5, even when the exact
branch where oscillation takes place does not coincide with
the represented branches, it can be seen that there exists
a point of Gol that will also belong to the corresponding
branch of the Tsypkin band, and, therefore, the system
will oscillate.

Additionally, the Figure 6 has been included in order
to compare the Tsypkin method and the DF method
in predicting the oscillations. While, according to the
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DF method, this system will not oscillate because there
is no intersection between its traces and the Gol, the
Tsypkin method reveals a steady state oscillation with an
intersection in one of its branches.

It is worth to remark that the distance MT presented
above, only offers information about the robustness
against oscillation appearance. Conversely to other robust-
ness indexes, as gain and phase margin, it is not directly
related with the performance of the close loop system, as
this margin is not necessarily placed in the same region
of the Nyquist plot. In the following sections this measure
MT will be evaluated in detail for different systems and
tuning methods.

4. DIMENSIONLESS CHARACTERIZATION OF
FOPTD SYSTEMS AND CONTROLLERS

In order to generalize the results for any FOPTD system,
its equations can be expressed in a dimensionless way using
the transformation s̄ = Ls. Owing to this variable change,
the analysis of the behavior becomes easier due to the
appearance of the ratio L/τ which will be of interest. Using
this transformation on the general expression of a FOPTD
system the resulting equation become:

G(s) =
Ke−Ls

τs+ 1

s= s̄
L===⇒ G(s̄) =

Ke−s̄

τ
L s̄+ 1

(5)

For any PID tuning method, the controller parameters can
be defined as functions of system’s ones. Depending on
these functions, the tuning rules are called homogeneous or
non-homogeneous. The homogeneous tuning rules in term
of the FOPTD system’s parameters are defined as follows,
(Balaguer et al. (2013)):

Kc = K−1φ1;Ti = Lφ2;Td = Lφ3; (6)

where φi are functions of the ratio L/τ . Substituting these
equations in the controller’s expression and making the
variable change:

C(s) =Kc

(
TiTds

2 + Tis+ 1

Tis

)
C(s̄) =K−1φ1

(
φ2φ3s̄

2 + φ2s̄+ 1

φ2s̄

)
(7)

The dimensionless open-loop transfer function can now be
obtained as:

Gol(s̄) =C(s̄)G(s̄) =
φ1

φ2

φ2φ3s̄
2 + φ2s̄+ 1

s̄
(
τ
L s̄+ 1

) e−s̄ (8)

The resulting open-loop transfer function depends only
on the dimensionless ratio L/τ and the tuning functions
which also depend on this ratio. In consequence, the
robustness margin MT defined in the previous section, for
FOPTD systems, will only depend on the ratio L/τ .

5. ANALYSIS OF THE RESULTS

In this section, the Tsypkin margins will be obtained for
FOPTD systems and controllers using the dimensionless

Fig. 7. Tsypkin Margin, MT , for the different PI tuning
methods as a function of L/τ .

approach. PI and PID controllers will be tuned using
different methods, namely Ziegler-Nichols, Cohen-Coon
and AMIGO.

5.1 PI tuning

In the Figure 7, the Tsypkin Margin, MT , is plotted as
a function of L/τ , for the different PI tuning methods.
This parameter, MT , defines the robustness margin to
limit cycle oscillations. Comparing the different tuning
methods, the AMIGO method leads to higher values of
MT than the other two methods, while the Cohen-Coon
results in the lowest values. Ziegler-Nichols method gives
intermediate results.

Another interesting point is the relation of the robustness
to oscillations to the ratio L/τ . In general, the higher
this ratio, the higher the value of MT . This means that
the problems of oscillations are more likely to occur if
the behavior of the system is more similar to a pure first
order system (L/τ small). In fact, for each tuning method
there is a critical value L/τ below which the resulting
MT = 0, what means that the closed loop has a non
vanishing oscillation. This critical value depends on the
tuning method.

The existence of the limit cycle does not guarantee that
the oscillation will appear, as this also depends on the size
of the attraction region of that limit cycle. If the attraction
regions is small, then the limit cycle only appears for
certain specific initial conditions or disturbances. In order
to illustrate this fact an example is provided.

According to Figure 7, a FOPTD system with a ratio
L/τ = 0.1 will oscillate with any tuning method. For this
example the AMIGO method has been used. The system
to be controlled is a FOPTD with K = 1, L = 1 and, to
accomplish the ratio, τ = 10. The controller’s parameters
for this system using the AMIGO PI method have been
obtained as (Kc = 2.8236 and Ti = 5.5038).

Two simulations are performed. In the first one, the
disturbance changes from 0 to 3δ when the system is
stabilized, and in the second one the disturbance changes
from 0 to 2δ. The rest of parameters remain unchanged.
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Fig. 8. Results of the simulation with p = 3δ. In the upper figure, reference, system’s response and disturbance signal
are shown. In the bottom figure, error, SSOD quantified error and disturbance signal are shown.

Fig. 9. Results of the simulation with p = 2δ. In the upper figure, reference, system’s response and disturbance signal
are shown. In the bottom figure, error, SSOD quantified error and disturbance signal are shown.

The results of these simulations can be seen in Figures
8 and 9 for the changes of 3δ and 2δ respectively. In
the first case, the system stabilizes, managing to reject
the disturbance without oscillations. It can be seen that
the error does not reach the superior bound +δ. In
contrast, in the second one, with a lower disturbance,
the system reaches the limit cycle, switching from +δ
to −δ periodically. Similar results have been observed
changing the set-point and without any disturbance on the
system and for Ziegler-Nichols and Cohen-Coon methods.
Consequently, the study of the attraction region must be
addressed in future works.

5.2 PID tuning

This method can also be applied to PID controllers. In
Figure 10, Tsypkin Margin MT , is plotted as a function of
L/τ , for PI and PID tuning using the AMIGO method.

An interesting feature is that the PI controller is more
robust to oscillations than the PID. This is not obvious,
because the design of the PI and PID controllers are based
on a similar robustness to instability. The reason is that
with the derivative term, the Nyquist plot tends to move,
for low frequencies, to the region where its Tsypkin bands
are located. This is because of the phase characteristics of
the derivative term, that adds phase for low frequencies.
Therefore, if we compare a PI and a PID with the same
phase margin, then the phase of the PID, for frequencies
below the gain crossover frequency, is more negative.
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Fig. 10. MT for PI and PID with AMIGO method.

Fig. 11. Bode diagram of the resulting Gol for the same
system using different tuning methods.

The MT was also calculated for PID with Ziegler-Nichols
and Cohen-Coon methods, but due to the PID high
frequency gain, the calculation is very sensible to the
number of harmonics considered, and, in order to obtain
an accurate value for the MT margin, a high number of
harmonics must be taken into account. This increases very
significantly the computation time needed, compared to
the case of the AMIGO PID method. This can be observed
in Figure 11, where the bode diagram of Gol is shown
for a given system with three different controllers, one for
each method. It is clear that the AMIGO controller filters
the high order harmonics better than Ziegler-Nichols and
Cohen-Coon controllers.

6. CONCLUSION

In this paper the robustness to oscillations of PI and
PID controllers with a SSOD sampling strategy has been
evaluated. To this end, Tsypkin’s method has been used
for developing a new measure of robustness against limit
cycles in this type of systems. Due to Tsypkins’s method,
the measure offers accurate results for systems with poor
high frequency filtering, as the FOPTD systems.

With regard to PI controllers, a comparative of its robust-
ness to oscillations has been presented for Ziegler-Nichols,
Cohen-Coon and AMIGO methods. The AMIGO obtains
the best results in terms of robustness and range of systems
covered.

On the other hand, with respect to PID controllers,
only AMIGO controller has been evaluated due to the
high dependency on high order harmonics of the other
methods. Interestingly enough, the PI presents better
results (regarding robustness to oscillations) than the PID,
even though both are designed with a similar robustness
to instability criterion.
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