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Abstract: This paper presents the modification of the well-known pole placement method
for first-order systems and PI control for the tracking problem. The main drawback of the
original method is the presence of a zero in the closed-loop transfer function, which has a
negative influence in the desired closed-loop response. Typically, this effect is cancelled by using a
reference filter within a two-degree-of-freedom control scheme. However, in this work we present
a simple modification of the original method that allows us to consider the zero effect in advance.
First, the effect of a zero term in the response of second-order systems is analyzed to see how
the time response parameters (overshoot, peak time, rise time and settling time) are affected.
Afterwards, this analysis and the resulting equations are combined with the pole placement
method to propose the new solution. Finally, simulation results are presented to demonstrate
the advantages of the proposed method, where it is shown that faster responses than by using
a reference filter are obtained. c© Copyright IFAC 2018.
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1. INTRODUCTION

The PID controller is by far the most common control
algorithm that can be found in industry and also in
academia. Hundreds of PID design methods are available
in literature, developed both in time or frequency do-
mains. About 95% of the control loops in industry are
PID controllers and fundamentally, most of them PI (T.
Hägglund, 2012). Its extensive adoption is mainly due
to the numerous advantages that its use presents, since
it requires a relatively simple implementation. There are
numerous tuning methods and its robustness has been
widely demonstrated. The history of the PID controller
is relatively recent. During the last 10 years, progress
has been made by leaps and bounds thanks to a large
extent and to slight modifications in the original control
structure that have satisfactorily solved the deficiencies
initially presented. This fact has turned the PID controller
into a fundamental tool for a sector as strategic as the
industrial one (Aström and Hägglund, 2006; Aström and
Murray, 2008; Vilanova and Visioli, 2012).

When facing processes without time delay, both pole-zero
cancellation and pole placement (and their variants) solu-
tions are the most used design methods in any automatic
control course (Guzmán et al., 2014). In the design of
PI controllers for first-order systems without delay for
the tracking problem, the presence of a closed-loop zero
influences on the system performance so that specifications
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(such as rise time, peak time, settling time and overshoot)
cannot be achieved. To avoid the effect of the zero, a
first-order filter in the reference is commonly used within
a 2 two degree of freedom (2DoF) control architecture
(Moliner and Tanda, 2016). However, there is a lack of
studies involving a typical 1DoF second-order feedback
loop involving a zero and how this zero affects to the
characteristic parameters of the system.

It is therefore necessary to study how the classical methods
of designing PI controllers for first-order systems are
modified so that the presence of zero in closed-loop can
be taken into account explicitly during the design stage of
the controller.

To visualize the problem, this paper presents a classic ex-
ample of PI control design for first-order systems by means
of the pole placement method. The direct application of
the method produces a closed-loop transfer function with
a zero defined by the integral time Ti of the controller,
that is cancelled with a first-order filter in the reference in
a 2DoF framework. This work proposes a modification of
this design method to deal with the presence of the zero in
a systematic way. To do this, we will first analyze how the
zero affects the characteristic parameters of a second-order
system, which will be used as design specifications. Then,
the design method is modified to consider the presence
of the zero and achieve the exact specifications. A set of
heuristic rules is provided for easiness of use. The major
contribution of this work lies in the nonexistence of an
analytical formula allowing to figure out the performance
in terms of peak time, overshoot, rise time and settling
time of a second-order system given the location of the
poles and the zero. It is demonstrated that this new design
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idea allows us obtaining faster responses and with better
performance than those obtained with the 2DoF control
scheme. On the other hand, notice that this idea could also
be extrapolated to other methods such as the λ method,
where the delay time is approximated by a non-minimum
phase zero. Notice that the proposed method is focused for
the tracking problem, and the regulation problem is not
considered in the design process.

The paper is organized as follows. First, the pole placement
method for PI control with first-order systems is presented
in section 2, as well as the classical equations for time
domain specifications of second-order systems. Section 3
is devoted to analyze the effect of the zero in the response
of second-order processes and to derive new equations for
the time domain specifications. Afterwards, in section 4
these new equations are combined with the pole place-
ment method to propose the new control design guideline.
Section 5 presents numerical examples to validate the
new open-loop equations and the proposed tuning design
method. The paper ends with some conclusions.

2. PRELIMINARIES

Lets consider a first-order system without delay given by
the following transfer function

G(s) =
k

τs+ 1
(1)

Then, when the pole placement method is used with PI
controller with proportional gain Kp and integral time Ti,
the following closed-loop transfer function is obtained for
a step-like input reference signal with amplitude Ue

Y (s) =

Kpk
Tiτ

(Tis+ 1)

s2 +
(

1+Kpk
τ

)
s+

Kpk
Tiτ

Ue
s

(2)

As observed, the resulting system has a second-order
response defined by its characteristic equation

J(s) = s2 + 2δωns+ ω2
n (3)

Depending on the value of the relative damping factor
δ, the system can be overdamped, when 1 ≤ δ, or
underdumped, when 0 ≤ δ < 1.

In this work, the underdumped case is considered, where
the time domain response is given by

y(t) = Ue

(
1− e−δωnt

(
cosωdt+

δ√
1− δ2

sinωdt

))
(4)

where ωd = ωn
√

1− δ2 and t ≥ 0.

The classical time domain specifications used for under-
dumped second-order systems are given by the overshoot
(%OS), the peak time tp, the rise time tr and the settling
time ts, expressed as follows (Shahian and Hassul, 1993;
Kuo and Golnaraghi, 2002; Ogata, 2009):

%OS = 100 exp

(
−δπ√
1− δ2

)
(5)

tp =
π

ωn
√

1− δ2
(6)

tr =
π − acos(δ)
ωn
√

1− δ2
(7)

Fig. 1. 2 DoF control structure with reference filter

ts ≈
4

δωn
(8)

So, in the pole placement method, once the desired time
domain specifications are determined, the parameters ωn
and δ are calculated to define the closed-loop characteristic
polynomial (3). Afterwards, the PI controller parameters
are computed by making (3) equal to the denominator of
(2) and obtaining the following equations

2δωn =
1 +Kpk

τ
→ Kp =

2δωnτ − 1

k
(9)

ωn
2 =

Kpk

Tiτ
→ Ti =

2δωnτ − 1

τωn2
(10)

However, notice that the presence of zero introduced by
the PI in (2) is not considered and it modifies the specified
response given by (4). Thus, it is typical to use a 2DoF
control scheme as shown in Fig. 1, where the following
first-order prefilter is included to cancel the zero effect

F (s) =
1

Tis+ 1
(11)

The next sections will describe how the pole placement
method can be modified to consider explicitly the zero
effect during the design stage. First, new equations for
overshoot, peak time, rise time and settling time are
obtained to include the zero effect. Afterwards, these
equations are used to calculate the new characteristic
polynomial in the pole placement method.

3. SECOND-ORDER SYSTEMS WITH ZERO

A system described by a transfer function G(s) is consid-
ered. Then, the effect of a zero (βs+ 1) on the system can
be analyzed as follows:

GT (s) = G(s)(βs+ 1) = G(s) + βsG(s) (12)

So, from the inverse Laplace transform properties, the time
response of (12), yT (t), can be calculated as:

yT (t) = y(t) + β
dy(t)

dt
(13)

where y(t) is the time response of G(s).

Then, in the following sections, the effect of the zero on
the time characteristic parameters is evaluated for the
underdamped case.

Such as commented above, the time response of a under-
damped second-order system is given by (4). Thus, after
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applying (13) to (4), the final time response is derived as
follows:

yT (t) = 1− e−δωnt
(

cosωdt+
δ − βωn√

1− δ2
sinωdt

)
(14)

Thus, from this expression the different characteristic time
parameters can be calculated resulting in:

• Peak time, tp. It is calculated by making equal to
zero the first derivative of (14), what results in the
following equation:

ωn√
1− δ2

ωdtp −
δβωn

2

√
1− δ2

ωdtp + βωn
2 cosωdtp = 0(15)

Then, after some manipulations, the following expres-
sion is obtained for the peak time:

tp =
1

ωd

[
atan

( −βωd
1 + σβ

)
+ ωptπ

]
(16)

where σ = −δωn, ωpt = 0 when (1 + σβ) < 0 β < 0,
and ωpt = 1 otherwise.

• Overshoot, %OS. The percentage of the overshoot is
calculated by substituting the peak time, tp, in (14)
and considering that:

%OS =

(
yT (tp)− yT (∞)

yT (∞)

)
× 100 (17)

So, the final equation of the overshoot is obtained as
follows:

%OS = 100
[
eσtp

(ωd − α(σ + βω2
n)

ωd
√

1 + α2

)
+ cosωosπ

]
(18)

with α = (−βωd)/(1 + σβ) β < 0, and where ωos = 1
when (1 + σβ) > 0 and ωos = 0 otherwise.

• Rise time, tr. This parameter can be obtained from
(14) by calculating the time when the output crosses
the value 1 for first time. That is:

1 =

[
1− e−δωnt

(
cosωdtr +

δ − βωn√
1− δ2

sinωdtr

)]
(19)

Then, dividing all the terms by cosωdtr, the following
equation is obtained:

tr =
1

ωd

[
atan

( ωd
βω2

n + σ

)
+ ωrtπ

]
(20)

where ωrt = 0 when atan(ωd/(βω
2
n+σ)) < 0 or β < 0,

and ωrt = 1 otherwise.

• Settling time, ts. The calculation of the settling time
is more complex than in the previous parameters since
it is required to make an analysis of the enveloping
responses for the second-order system. So, only the
final result is shown:

ts ≈ −
ln
(

0.02
√
1−δ2
a

)
δωn

(21)

where

a = |β|

√
1

|β|2
± 2δωn
|β|

+ ω2
n

being the sign + or − for the non-minimum and
minimum phase, respectively.

As observed, the zero effect can be clearly appreciated
when comparing equations (18), (16), (20) and (21), with
equations (5), (6), (7) and (8).

4. INVERSE POLE PLACEMENT METHOD

Such as commented in section 2, in the classical pole
placement method the first step is to impose the closed-
loop specifications in terms of overshoot, peak time, rise
time or settling time. Then, these specifications are used
to calculate the parameters of the closed-loop character-
istic polynomial, δ and ωn. Afterwards, the PI controller
parameters, Kp and Ti, are obtained from equations (9)
and (10).

The original method does not consider the presence of
the zero, which appears in the final closed-loop transfer
function as shown in (2). One solution to this problem is
to use the reference filter described in section 2. However,
another solution is to consider the presence of the zero
parameter initially during the design process. This idea
can be done by using the results presented in section 3,
where it is possible to know how the temporal response of
a second-order system varies by the influence of a zero.

Then, once the desired closed-loop specifications are given
(overshoot, peak time, rise time or settling time), δ and ωn
are calculated considering the effect of the existing zero in
the closed-loop transfer function. Afterwards, these new
closed-loop parameters are linked to the pole placement
method to obtain the PI controller parameters. The guide-
line of the proposed method is the following:

(1) Set the desired closed-loop time specifications with
some of the following combinations:
• Overshoot and peak time.
• Overshoot and rise time.
• Peak time and rise time.

(2) The zero is now considered in the closed-loop transfer
function:

Gcl(s) =
ω2
n (βs+ 1)

s2 + 2δωns+ ω2
n

(22)

with β = Ti. So, according to the pole placement
method the Ti parameter must be calculated based on
equation (10), and thus the final closed-loop transfer
function is described by

Gcl(s) =
ω2
n

(
2δωnτ−1
τωn

2 s+ 1
)

s2 + 2δωns+ ω2
n

(23)

(3) Then, the parameters δ and ωn of the closed-loop
transfer function (23) are calculated from equations
(16), (18), (20) or (21) depending on the closed-loop
specifications selected in step 1. Notice the coupling
between the zero parameter and the characteristic
polynomial is made through the parameters δ and
ωn.

(4) Finally, the PI controllers parameters, Kp and Ti, are
calculated from equations (9) and (10) based on the
parameters δ and ωn obtained in the previous step.
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5. NUMERICAL EXAMPLES

This section shows several examples of the results pre-
sented in sections 3 and 4.

5.1 Zero effect on open-loop response

First, two open-loop examples are summarized to show
the validation of the characteristic parameters presented
in section 3 defined by the equations (16), (18), (20) and
(21). Both examples are simulated considering an unit step
for the input signal.
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Fig. 2. Open-loop example for k = 1, δ = 0.5, β = 1 and
ωn = 1
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Fig. 3. Open-loop example for k = 1, δ = 0.5, β = −2 and
ωn = 1

Figures 2 and 3 show two examples of an underdamped
process, for minimum and non-minimum phase behaviours
respectively. The example is given for a second-order
system described by k = 1, δ = 0.5, and ωn = 1 . Figure
2 shows the case for β = 1 and Figure 3 for β = −2.
Both figures show the numerical results for equations (16),
(18), (20) and (21), where the obtained values correspond
exactly with those calculated from the simulations.

5.2 Inverse pole placement example

Lets consider a first-order system with parameters k = 1
and τ = 4s. So, the design of a PI controller is required
to reach a closed-loop underdamped response to reach a
unitary step reference signal and with the following time
specifications %OS = 15% and tp = 3s.

Table 1 shows the design parameters obtained for the
classical pole placement method with reference filter and
for the inverse pole placement method proposed in this
paper. As observed, the proposed method results in a
smaller Kp parameter and a larger Ti parameter for the PI
controller. On the other hand, it is also shown how different
values for δ and ωn are obtained, since in the inverse pole
placement method the zero effect is considered through
equations (16) and (18).

Figure 4 shows the simulation results for this example. It
can be seen how both methods reach the proposed closed-
loop specifications (the pole placement method without
filter is also presented to show how the specifications
cannot be reached because of the zero effect), but the
proposed method provides a faster response. The Integral
Absolute Error (IAE) measurement has been used to
compare the simulation results, obtaining:

IAEinverse = 1.1072 IAEfilter = 1.3818 (24)

what gives an improvement of around 20%.

Pole placement with reference filter
Kp Ti β δ ωn Ki

4.0590 0.6781 0.6781 0.5169 1.2233 5.9858

Inverse pole placement
Kp Ti β δ ωn Ki

3.5901 1.1860 1.1860 0.6596 0.8699 3.0271

Table 1. Design parameters for specifications
%OS = 15% and tp = 3s

A second example is presented for a first-order system
with k = 1 and τ = 3s, and now for the closed-loop
specifications of overshoot %OS = 15% and rise time
tr = 2s. The resulting design parameters are shown in
Table 2 and the simulation results in Figure 5. Again, the
specifications are fulfilled for both design methods, but
the inverse pole placement gives also a faster response. In
this case, the improvement on IAE values is around 6% as
shown in the following:

IAEinverse = 1.2860 IAEfilter = 1.3690 (25)

Pole placement with reference filter
Kp Ti β δ ωn Ki

2.8299 0.6187 0.6187 0.5169 1.2348 4.5739

Inverse pole placement
Kp Ti β δ ωn Ki

2.0069 0.9720 0.9720 0.6041 0.8296 2.0647

Table 2. Design parameters for specifications
%SO = 15% and tr = 2s

5.3 Disturbance rejection problem

Such as commented above, the proposed method is focused
on the tracking problem where remarkable improvements
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Fig. 4. Simulation results for the specifications %OS = 15% and tp = 3s for a unit step reference signal. Responses for
classical pole placement, pole placement plus reference filter, and the the proposed inverse pole placement methods
are shown.
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Fig. 5. Simulation results for specifications %OS = 15% and tr = 2s for a unit step reference signal. Responses for
classical pole placement, pole placement plus reference filter, and the the proposed inverse pole placement methods
are shown.
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Fig. 6. Disturbance rejection example for parameters in Table 1 and for an unitary disturbance step signal at time
instant t = 1s

are achieved. However, as in this case we have only one
degree of freedom, the modification of the PI controller
parameters will result in a slower response for the distur-
bance rejection problem. This fact can be directly observed
from the Ki = Kp/Ti parameter showed in Tables 1 and
2. As can be seen, smaller values for Ki are obtained for
the proposed method, what results in a slower disturbance
rejection response (Aström and Hägglund, 2006). As an
example, Figure 6 shows the results for the regulation
problem considering the parameters in Table 1. It can be
observed how the proposed inverse method is slower than
the case with the reference filter as expected from the Ki

values. The IAE values for the regulation problem in this
example are:

IAEinverse = 1.2432 IAEfilter = 0.7449 (26)

Thus, this fact must be considered when the proposed
method is used in comparison with reference filter case.

6. CONCLUSIONS

In this work, a simple modification of the classical pole
placement method for PI control and first-order systems
is proposed. The main idea consists in evaluating the zero
effect on the response of second-order processes and then
using this result in the control design method. Hence,
new equations for the temporal parameters of overshoot,
peak time, rise time, and settling time with the zero
influence are derived. These equations are used to modify
the original closed-loop specifications in the pole place-
ment method, and afterwards the resulting PI controller
parameters are calculated. It has been observed that the

new method leads to reduce the proportional gain and to
increase the integral time of the PI controller. On the other
hand, faster responses and with better IAE values are
obtained with respect to a two-degrees-of-freedom control
scheme. However, it must be considered that slower re-
sponses are derived with respect to the regulation problem.
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K. J. Aström and T. Hägglund. Advanced PID Control.
ISA-The Instrumentation, Systems, and Automation
Society, USA, 2006.

K. J. Aström and R. M. Murray. Feedback Systems: An
Introduction for Scientists and Engineers. Princeton
University Press, USA, 2008.
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