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Abstract: The objective of the paper is to present the method of fitting finding constant
λ coefficient and a parameter of an order function of the processes described by variable-,
fractional-order backward difference of the Grünwald-Letnikov-type. As a qualitative criterion
of the estimation the Coefficient of Determination (which we mark as R2) and the Mean Square
Error are used. All the numerical experiments were done with MATLAB.
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1. INTRODUCTION

Fractional order calculus became an useful tool in mod-
elling, which could be successfully used in both: continuous-
and discrete-time systems. Models which involve fractional
derivatives and fractional difference operators can very
often describe real phenomena in more accurate way than
it is possible with integer order models. The theory and
applications of fractional calculus can be reviewed in (Hil-
fer, 2000; Kaczorek, 2009; Mozyrska & Wyrwas, 2015,
2017; Ostalczyk, 2016; Podlubny, 1999). For variable-order
applications the reader can see more in Mozyrska & Os-
talczyk (2017). In the paper we investigate discrete-time
operators with variable-orders. One of the most important
issues in modeling is finding a function which fits the ex-
perimental data, Garcia & Aguirre & Surez (2008). In the
paper we deal with the problem of identifying parameters
of a variable-order in discrete-time fractional equations by
a variety of techniques, mainly based on MATLAB rou-
tines. Variable-order derivatives and differences are new
directions in the research of fractional systems. Moreover,
now there are research activities that are focused on de-
veloping new analysis and closed-loop system synthesis
methods for fractional-order controllers being an extension
of classical control theory. An appropriate choice of the
order functions in fractional PID controllers is still one of
the open problems.

In this work we calculate values of scalar eigenvalue func-
tions for fractional variable-order initial value problem and
then we are fitting back the noised eigenvalue function.
The fitting process is based on assumption that the class
of order function is known. There are considered functions
of different class of monotonicity. Moreover, the constant λ
coefficient of the linear equation with variable-, fractional-
order operator and the parameter of order function should
be estimated during fitting procedure. The idea of us-
ing particular MATLAB routine (lscurvefit) to estimate
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fractional order parameters was inspired by Almeida &
Bastos & Monteiro (2018). The paper is the first attempt
to wider research of fitting values of fractional-, variable-
order function. The method is planned to be used in frac-
tional PID-like controllers. The important goal is to state
what type of order functions can be considered as better
in simulations of measurements. Moreover, the methods of
fitting parameters of equations and order-functions are the
core issue in possible modelling of controllers in closed-loop
systems.

2. PRELIMINARIES

Definition 1. (Mozyrska & Ostalczyk (2017))
For k, l ∈ N and a given order function ν(·) we define the
oblivion function, as a discrete function of two variables,
by its values a[ν(l)](k) given for k > 0 as

a[ν(l)](k) = (−1)k
ν(l) [ν(l)− 1] · · · [ν(l)− k + 1]

k!
, (1)

and a[ν(l)](0) = 1.

Formula (1) in Definition 1 is equivalent to the following
recurrence with respect to k ∈ N
a[ν(l)](0) = 1 ,

a[ν(l)](k) = a[ν(l)](k − 1)

[
1− ν(l) + 1

k

]
for k > 1 .

(2)

Definition 2. (Mozyrska & Ostalczyk (2017))
The Grünwald-Letnikov variable-, fractional-order back-
ward difference (GL-VFOBD) with an order function ν :
Z→ R+ ∪ {0} of function x(·) is defined as a finite sum(

∆[ν(k)]x
)

(k) =

k∑
i=0

a[ν(k)](i)x(k − i)

=
[
1 a[ν(k)](1) · · · a[ν(k)](k)

]


x(k)
x(k − 1)
· · ·
x(1)
x(0)

 . (3)
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In the paper we consider the basic form of linear equation
with variable-order(

∆[ν(k)]x
)

(k) = λx(k − 1) + u(k − 1) , k ≥ 1 (4)

with initial condition x(0) = x0, constant coefficient λ ∈
R. The function u(·) is given input signal. Then we can
solve equation (4) by recurrence:

x(k) = −
k∑
i=1

a[ν(k)](i)x(k − i) + u(k − 1) , k ≥ 1 . (5)

If in equation (4) we use constant order function equals
zero, then we receive classical linear recurrence of first
order. In other cases we include memory into the system.

Let us define the following matrix, see for example
Mozyrska & Ostalczyk (2017)

A[ν(k)] =


1 a[ν(k)](1) · · · a[ν(k)](k)

0 1 · · · a[ν(k−1)](k − 1)
...

...
...

0 0 · · · 1

 . (6)

Instead of working with recurrence, we can use a matrix
form of defined matrices A[ν(k)]. Moreover, let us use the
following notation:

x(k) =


x(k)

x(k − 1)
...

x(1)
x(0)

 (7)

and similarly for input signal

u(k) =


u(k)

u(k − 1)
...

u(1)
u(0)

 . (8)

Then, equation (4) can be written in a matrix form

A[ν(k)]x(k) =

[
λx(k − 1)
x(0)

]
+ u(k) , k ≥ 1

and it looks like the series of algebraic solutions

x(k) =
(
A[ν(k)]

)−1([λx(k − 1)
x(0)

]
+ u(k)

)
, k ≥ 1 . (9)

3. ANALYTICAL APPROXIMATION

During the first stage of our research we are trying to
find constant coefficient λ in an analytical way. Our GL-
VFOBD calculations are based on (9) matrix definition.
We assume that the order function is known and because
of that we also know the matrices given by formula (6).
As a qualitative criterion of the fitting process we are
using Mean Squared Error (which in our case would be a
function of λ which we mark as Sk(λ)) and the Coefficient
of Determination which we mark as R2.
We are doing numerical experiment by taking the values
of exact solution to (9). Then, we add random values with
mean equal to 0 and standard deviation equal to 20% of the
mean of the given values of function x(k). This simulates
real time measurement data. In this case the simulated

data can be described as yk = x(k) + ε, where ε ∼ N(0, σ)
is added random value. The simplest criterion to fit λ
would be in this case the minimisation of the following
function

Sk(λ) := ETk Ek , (10)

where

Ek = y(k)−
(
A[ν(k)]

)−1([λy(k − 1)
y(0)

]
+ u(k)

)
. (11)

To simplify the formulation of minimiser we slightly
changed formula (11), which enables easier calculations
and (based on the experimental results) should not have a
big impact on the final results. The updated formula which
we use is the following

Ek = y(k)−λ
(
A[ν(k)]

)−1 [y(k − 1)
y(0)

]
+
(
A[ν(k)]

)−1
u(k) .

(12)

The similar situation has been considered in the paper,
where we investigated approximations of λ for equations
without u(·) function, in Oziablo (2018).

Let us use simplified Ek, then we can calculate the first
derivative of Sk(λ) in the following way

S′k(λ) = E′Tk Ek + ETk E
′
k . (13)

From that the critical point of Sk(λ) is for S′k(λ) = 0, we
receive λ0 which minimises Sk for the set of k + 1 values
of measurements. It is given by the formula

λ0 =
1

2d

(
yTkA

[
yk−1
y0

]
+
[
yTk−1y0

]
(AT )yk

−
[
yTk−1 y0

]
ATAuk − uTkA

TA

[
yk−1
y0

])
,

(14)

where

d =
[
yTk−1y0

]
ATA

[
yk−1
y0

]
(15)

and A =
(
A[ν(k)]

)−1
. We also use the abbreviations that

yk := y(redk).

Then, theoretical values ŷ(k) we have from

ŷ(k) =
(
A[ν(k)]

)−1([λ0y(k − 1)
y(0)

]
+ u(k)

)
. (16)

In our research we used four different order functions:
ν1(k) = e−0.2k, ν2(k) = 1−e−0.2k, ν3(k) = 1− 0.5

k+1 , ν4(k) =

sin2(0.5k). The results of analytical lambda calculations
are shown in Figures 1, 2, 3, 4. The invocation results
summary are shown in Table 1.

Order function Estimated λ R2 Sk(λ)

ν1(k) 0.26897 0.95305 0.023426
ν2(k) 0.26458 0.65547 7.816600
ν3(k) 0.24310 0.37761 499.2796
ν4(k) 0.25784 0.83715 0.027874

Table 1. Analytical λ estimation results.

The analytical method of λ estimation returned the best
result for the order function ν1(k). Even when the esti-
mated λ value 0.26897 significantly differed from the λ of
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Fig. 1. Analytical estimation of λ for order function
ν1(k) = e−0.2k.

Fig. 2. Analytical estimation of λ for order function
ν2(k) = 1− e−0.2k (Levenberg-Marquardt).

the original, noised function (which was 0.3) Coefficient of
Determination (R2) higher than 0.9 proofs that the func-
tion was properly fitted. Also for the order function ν4(k)
the fitting it gives a good result (R2 equal to 0.83715),
even though the estimated λ value is equal to 0.25784
(in comparison to original 0.3). For the order function
ν2(k) the values of R2 is equal to 0.65547 and we get
the satisfactory fit (R2 value between 0,6 - 0,8 usually is
considered as satisfactory). What is interesting, that the
estimation error of λ was in this case lower than e.g. for
ν3(k) order function. The worst fitting result we get for
order function ν3(k). Then, R2 equals to 0.37761, means
that the fitting is not sufficient (R2 value between 0 - 0.5
usually is considered as not sufficient).

4. APPROXIMATION OF UNKNOWN λ BY MATLAB
ROUTINE

During the second part of our research we are trying to
find a constant coefficient λ using MATLAB routines. We
assume that the order function is known.

Fig. 3. Analytical estimation of λ for order function
ν3(k) = 1− 0.5

k+1 .

Fig. 4. Analytical estimation of λ for order function
ν4(k) = sin2(0.5k).

To fit our simulated experimental data with equation given
by (9) we use lscurvefit MATLAB routine. The routine
takes as an argument the function, which in our case
calculates GL-VFOBD values, the set of experimental data
and the initial value of searched parameter (in our case
the initial value of λ). As the result the routine returns
the parameter value for which the Mean Squared Error
between function values (which calculates in our case GL-
VFOBD) and experimental data is the lowest. The tests
were done for the same set of four order functions as in
the previous paragraph. Also the input data were exactly
the same to make it easier to compare the results with the
analytical solution described in the previous paragraph.

We checked the results for two different searching algo-
rithms supported by lscurvefit routine which are Trust-
Region-Reflective Least Squares and Levenberg-Marquardt
Method. In all the cases both methods gave exactly the
same results. The results of the invocations are shown in
Figures 5, 6, 7, 8 (with marked Coefficient of Determina-
tion and Mean Squared Error values).
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Fig. 5. Estimation (lsqcurvefit) of λ for order function
ν1(k) = e−0.2k.

Fig. 6. Estimation (lsqcurvefit) of λ for order function
ν2(k) = 1− e−0.2k (Levenberg-Marquardt).

The invocation results summary is shown in Table 2.

Order function Estimated λ R2 Sk(λ)

ν1(k) 0.32682 0.99206 0.0039607
ν2(k) 0.30473 0.99286 0.1620900
ν3(k) 0.30404 0.98801 9.6219000
ν4(k) 0.30972 0.99601 0.0006827

Table 2. λ estimation with lsqcurvefit routine.

Using lscurvefit MATLAB routine we received very good
results. For all the order functions Coefficient of Determi-
nation (R2) significantly exceeded 0.9 (in most of the cases
it was higher than 0.99) which means very good fitting.
Also estimated λ values were in most of the cases very close
to the original λ value of the noised signal. The lscurvefit
MATLAB routine returned the best result for the order
function ν4(k) (R2 equal to 0.99601). What is interesting is
that while the Coefficient of Determination was the highest
for ν4(k), the estimation error of λ was the lowest for ν3(k).
At the same time for the order function ν3(k) the value of
R2 was the lowest one (but still significantly above 0.9),

Fig. 7. Estimation (lsqcurvefit) of λ for order function
ν3(k) = 1− 0.5

k+1 .

Fig. 8. Estimation (lsqcurvefit) of λ for order function
ν4(k) = sin2(0.5k).

lower even than for the order function ν1(k) for which the
estimation error was relatively high λ. The possible reason
of getting such results is the noise added to the original
function (with λ = 0.3) which may increase the calculated
Coefficient of Determination.

5. APPROXIMATION OF UNKNOWN λ AND
ORDER FUNCTION VALUES

In the last step of our research we tried to fit the constant
coefficient λ and the parameter p of the order function
assuming that the general class of the order function is
known. For the tests we took given in previous section
formulas of the order functions (where p is searched
parameter). As in the previous steps we used lscurvefit, but
in this case the routine was provided with the initial values
of λ and p and as a result it returned the optimal values
of these two parameters which minimize Mean Squared
Error between experimental data and GL-VFOBD values.
For the order functions ν1(k) and ν2(k) the original p
parameter value was -0.2. For the order functions ν3(k)
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and ν4(k) as the original p parameter value we took 0.5.
For lscurvefit routine in most of the cases both (Levenberg-
Marquardt and Trust Region) algorithms gave the same
results. Just for the order function ν2(k) = 1 − e−0.2k

the results were different. The results of lscurvefit routine
invocations are shown in Figures 9, 10, 11, 12, 13.

Fig. 9. Estimation (lsqcurvefit) of λ and p parameter for
order function ν1(k) = e−0.2k.

Fig. 10. Estimation (lsqcurvefit) of λ and p parameter
for order function ν2(k) = 1 − e−0.2k (Levenberg-
Marquardt).

The invocation results summary is shown in Table 3 (LM
- Levenberg-Marquardt algorithm, TR - Trust Region al-
gorithm). Using lscurvefit MATLAB routine to estimate

Order function Est. λ Est. p R2 Sk(λ, p)

ν1(k) 0.2773 -0.1808 0.9954 0.0022
ν2(k)(LM) -1.9979 -22.428 0 32.5162
ν2(k)(TR) 0.2592 -0.2820 0.9943 0.1188
ν3(k) 0.2643 0.0336 0.9940 4.8367
ν4(k) 0.9535 0 0.7108 0.0516

Table 3. λ and p parameter estimation with
lsqcurvefit routine.

Fig. 11. Estimation (lsqcurvefit) of λ and p parameter for
order function ν2(k) = 1− e−0.2k (Trust Region).

Fig. 12. Estimation (lsqcurvefit) of λ and p parameter for
order function ν3(k) = 1− 0.5

k+1 .

λ and p parameters gave very good results for order func-
tions ν1(k) and ν3(k). In both cases we had Coefficient
of Determination (R2) higher than 0.99 which means a
very good fitting. For the order function ν2(k) lscurvefit
routine returned good results only if we used Trust Region
algorithm (R2 higher than 0.99). Fitting did not work at
all for order function ν2(k) using lscurvefit routine with
Levenberg-Marquardt algorithm (R2 equal to 0). For order
function ν4(k) fitting results were not as good as for the
rest of the functions but still one can considered as satisfac-
tory (R2 value between 0.6 and 0.8). What is worth to be
noticed, it is that estimated values of λ and p parameters
were usually much different than the original parameter
values, even while the Coefficient of Determination proved
that the fitting process was correct and the fitting error
was very low.
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Fig. 13. Estimation (lsqcurvefit) of λ and p parameter for
order function ν4(k) = sin2(0.5k).

6. CONCLUSION

Both λ and parameter of order function can be successfully
estimated using MATLAB. Function fitting for most of the
examples was very high, taking as a qualitative criterion
the Coefficient of Determination R2. Also presented ana-
lytical method to find λ gave good results in most of the
examples, but in this cases the fitting quality depends on
the order function.
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