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Abstract: In this paper we assess the performance improvement achievable by using one-
degree-of-freedom fractional-order proportional-integral-derivative controllers (FOPI/FOPID)
instead of their integer-order counterparts (PI/PID). To this end, we take into account a
single-pole fractional-order model, which has the advantage of representing a wide variety of
process dynamics, ranging from over-damped (first-order models) to under-damped behaviors,
depending on the fractional order α. In the proposed analysis we consider a combined
performance index which deals with the trade-off between servo and regulatory control modes.
Moreover, the performance of the closed-loop system is optimized subject to a robustness
constraint, expressed as a target maximum sensitivity of either 1.4 or 2.0. The obtained
performance assessment results are shown for different values of the fractional order α of
the model and for different normalized dead times, thus quantitatively evaluating the benefits
achievable with fractional controllers on a wide variety of process dynamics.

1. INTRODUCTION

With no doubt, since their introduction in 1940, com-
mercial proportional-integral-derivative (PID) controllers
have been the most extensive option that can be found
in industrial control applications (Åström and Hägglund,
2006). Their success is mainly due to their simple structure
and to the physical meaning of their three parameters
(therefore making manual tuning possible and understand-
able for industrial practitioners). This fact makes PID
control easier to understand by the control engineers than
other most advanced control techniques. In addition, the
PID control algorithm provides satisfactory performance
in a wide range of practical situations.
In literature, many techniques to tune PID controllers have
been proposed (O’Dwyer, 2009). Many tuning techniques
embed in the design process technical aspects that are
desirable from an industrial process control point of view,
such as speed of response, robustness, noise filtering, etc.
Among them, two of the most important objectives are a
satisfactory load disturbance rejection (also known as regu-
latory control) and a satisfactory response against changes
in the set-point value (also known as servo control) (Ar-

rieta and Vilanova, 2007; Alfaro et al., 2009b). Finally,
the robustness issue is of paramount importance and is
often taken into account by tuning rules (Sánchez et al.,
2015). The difficulty in the tuning process is that the three
aforementioned aspects in PID control are often competing
objectives. Therefore, a PID tuning that considers all these
targets should be based on a trade-off among these goals.
Nowadays, due to the development of the fractional calcu-
lus, many control problems for which the existing theory
did not provide satisfactory results can be tackled using
the fractional tools (Das, 2011). Despite the extension of
advanced methodologies originally developed for integer-
order systems to fractional-order ones (Padula and Visioli,
2014; Padula et al., 2013), one of the main applications
of fractional calculus in control is the generalization of
the classical integer PID, known as fractional-order PID
(FOPID) controller which has been firstly proposed in
(Podlubny, 1999). The FOPID controller is characterized
by two elements: a fractional integrator, whose order is
usually denoted as λ, and a fractional differentiator, whose
order is usually denoted as µ. Different works (Hui-fang
et al., 2015; Padula and Visioli, 2011; Li et al., 2010)
have shown that a suitable choice of the fractional orders

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

FrAT2.4

© 2018 International Federation of Automatic Control 551



µ and λ provides a better performance whether or not
robustness conditions are considered. Other studies, see
e.g. (Padula and Visioli, 2016), have shown that FOPID
controllers are more fragile compared to the standard PID
controller, and therefore special care must be used in the
tuning procedure. Interestingly, the same need to trade off
between the aforementioned different objectives, which is
a characteristic feature of PID control, and control in its
most broad sense, also affects FOPID controllers (Sánchez
et al., 2017).
Fractional calculus finds another interesting application in
the dual aspect of the controller design, which is the pro-
cess modeling. In particular, a generalized model structure
which comprises a single fractional pole plus a dead time,
hereafter referred to as Fractional First Order Plus Dead
Time (FFOPDT) model, has been extensively investigated
(Li and Chen, 2014; Luo and Chen, 2010; Das et al.,
2011a; Tavakoli et al., 2010). The FFOPDT can capture
both the well-known first-order-plus-dead-time (FOPDT)
model dynamics and the under-damped dynamics, which is
traditionally described via a second-order-plus-dead-time
(SOPDT) model (Das et al., 2011b). This property is
highly desirable in practice because it does not require
to modify the model structure according to the dynamics
of the process to be modeled, thus greatly simplifying
next step, which is the controller tuning. Specials efforts
have been made to find the suitable four parameters that
compose this model (static gain K, the time constant T ,
the dead time L and the fractional order, denoted as α)
to match a given response. In particular, researches have
focused on the fractional order α, that plays a major role
in changing the dynamic behavior of the model, (Tavakoli
et al., 2010). Note that the FFOPDT model represents
a genuine generalization of the FOPDT model, which is
re-obtained when the fractional order α is set to 1. It
is worth mentioning that other more complex fractional
models can be found in the literature. In (Das et al.,
2011b) a fractional model that has two fractional orders
has been proposed and (Tavakoli et al., 2010) proposes
a model with five parameters, among which only one is
of fractional order. However, because of their simplicity
and their capability of representing several dynamics in a
satisfactory way, in the present work we consider FFOPDT
models, along the lines of (Guevara et al., 2015).
In this paper, we will show the advantages of using FOPID
controllers, and the subclass of FOPI controllers, against
their integer counterparts, namely PID an PI controllers.
In particular, we propose an optimization-based tuning
procedure, where the optimal trade-off between the servo
and the regulatory mode is found by using an optimization
functional that combines both objectives. The third goal,
which is the robustness of the closed-loop system, is taken
into account by constraining the maximum sensitivity MS

to either 1.4 (robust tuning) or 2.0 (aggressive tuning).
The aforementioned constrained optimization problem is
solved for different normalized dead times and for different
fractional orders of the FFOPDT model, thus providing a
comprehensive quantitative performance assessment. Sim-
ulation examples show the effectiveness of the proposed
tuning approach and the advantage of using FFOPDT
models and fractional controllers.
The paper is organized as follows. Section 2 presents the
control system configuration and concepts used to tackle

the performance and robustness issue. Section 3 describes
the results obtained from the comparison of the control
systems performance due to the use of integer and frac-
tional PID controllers. In Section 4 there is an example of
the use of the fractional calculus in the design of control
systems and the paper ends with conclusions in Section 5.

2. MATERIALS AND METHODS

Consider the closed-loop control system shown in Fig. 1,
where P (s) is the controlled-process model and C(s) the
controller to be tuned. In this system, r(s), u(s), d(s), and
y(s), are the set-point value, the controller output, the
load-disturbance, and the controlled variable, respectively.

Figure 1. Closed-loop control system

2.1 Controlled Process Models

The controlled process P (s) is considered here a FFOPDT
model, whose dynamics is described by the following
transfer function

P (s) = Ke−Ls

Tsα + 1 . (1)

where K is the static gain, T is the time constant, α
is the fractional order, and L is the dead time. The
FFOPDT dynamics can be completely characterized by
using two dimensionless parameters: the fractional order
α and the fractional normalized dead time τo = L

T
1
α
. The

class of models (1) represents a wide range of processes,
from non-oscillatory processes, including first-order and
over-damped processes, to processes with an oscillatory
dynamics. In this paper we consider 1 ≤ α ≤ 2. Note that
when α = 1 a classical FOPDT model is obtained and
when α = 2 a pair of pure imaginary poles are obtained
(undamped oscillatory behavior).
Dealing with a fractional-order v requires the application
of a method for the rational approximation of the non
integer term. In this work, the integer representation of
the fractional part can be obtained by applying the so-
called CRONE approach (Oustaloup et al., 2000), defined
as:

sv → sv[wl,wh] ≈ Co
N∏
k=1

1 + s
wz,k

1 + s
wp,k

, v > 0, (2)

where it is necessary to choose the frequency range [ωl, ωh]
(selected as [0.001, 1000] in this work) where the approxi-
mation is valid. Additionally, the term Co, is adjusted so
that the approximation has unit gain at the gain crossover
frequency. Furthermore, the parameter N in (2) (in this
case N = 8) can be used to select the number of poles
and zeros of the transfer function that approximates the
fractional term.
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2.2 1DoF PID Controller Equation

The output signal of a one-degree-of-freedom (1DoF) PID
controller is

u(s) = Kp {ep(s) + ei(s) + ed(s)} , (3)
with

ep(s) = r(s)− y(s), (4)

ei(s) = 1
Tis

[r(s)− y(s)], (5)

ed(s) = − Tds
Td
ζ s+ 1

y(s), (6)

where Kp is the controller proportional gain, Ti the inte-
gral time, Td the derivative time and Td

ζ is the derivative
filter time constant (traditionally selected by fixing ζ = 10
(Visioli, 2006)). As it is shown in (6), the derivative action
is only applied to the feedback signal, in order to avoid
extreme instantaneous changes in the controller output
signal, known as derivative kick, when a set-point step
change occurs (Åström and Hägglund, 2006).

2.3 1DoF FOPID Controller Equation

For the FOPID controller, the output signal is
u(s) = Kp {epf (s) + eif (s) + edf (s)} , (7)

with
epf (s) = r(s)− y(s), (8)

eif (s) = 1
Tisλ

[r(s)− y(s)], (9)

edf (s) = − Tds
µ

Td
ζ s+ 1

y(s), (10)

where λ and µ are the fractional orders of the integral and
derivative part, respectively. Moreover ζ is defined as

ζ = 10T
µ−1
µ

d , (11)
with the purpose of locating the filter pole cut-off fre-
quency one decade above the fractional derivative gain
crossover frequency, thus generalizing the classical rule
ζ = 10.

2.4 Performance and Robustness

The tuning methods applied to obtain the optimal pa-
rameters consider the trade-off between performance and
robustness along the line of Alfaro et al. (2009a); Vilanova
et al. (2012). The functional to be optimized is a multiob-
jective performance index given by

Je = Jer + Jed, (12)
where Jer quantifies the set-point tracking performance
and Jed measures the load disturbance rejection perfor-
mance. Both indexes are computed as the integral of the
absolute value of the error, given by∫ ∞

0
|e(t)|dt =

∫ ∞
0
|r(t)− y(t)|dt. (13)

It is well known that robustness issue should also be
taken into account for the control system. Indeed, the de-
sign procedure is usually based on low-order linear model
identified at the closed-loop operating point and possible

nonlinearities and uncertainties found in most of the real-
world industrial processes can change the dynamics. To
this end, it is necessary to consider certain stability mar-
gins, or robustness requirements, for the control system.
In this paper, as an indicator of the closed-loop system
robustness, the maximum value of the sensitivity function
will be used. It is defined as

MS = max
ω
|S(jω)| = max

ω

1
|1 + C(jω)P (jω)| . (14)

The MS value should remain, at least for stable processes,
in the range 1.4 ≤ MS ≤ 2.0 (Åström and Hägglund,
2006). We consider here the limits of this range, i.e.
MS = 1.4 and MS = 2.0.

2.5 Improvement provided by FOPI(D) controllers

Aimed at quantifying the performance improvement pro-
vided by FOPI(D) controllers, the indexes Jn(PI) and
Jn(PID) will be employed. These are defined as:

Jn(PI) =
Je(FOPI)

Je(PI)
, (15)

for FOPI/PI controller and as

Jn(PID) =
Je(FOPID)

Je(PID)
, (16)

for FOPID/PID controllers.
As can be seen in (15) and (16), the improvement in the
performance will be measured considering two different
cases, depending on the use (or not) of the derivative
action.

3. PERFORMANCE ASSESSMENT

In this section, optimal values of the cost function (12) are
provided for different values of τ0, ranging from 0.1 to 2.0,
and also for several values of the fractional order model α.
The rationale is to study a whole family of processes and to
examine a variety of dynamics. In this framework, PI, PID,
FOPI and FOPID controllers are tuned by minimizing
the cost function (12) with a constraint on the maximum
sensitivity MS .

3.1 PI vs FOPI controllers

First, consider the case when MS = 1.4 is selected. PI and
FOPI controllers were tuned by considering the fractional
order α in the range 1.0 ≤ α ≤ 1.7, because outside
this interval, the normalized proportional gain κp attains
extremely low values. Note that this is in line with the
long-held perception that PI regulators are unsuitable to
control highly underdamped processes. Therefore, consid-
ering more oscillatory dynamics in the process than the
ones obtained with α = 1.7 does not seem meaningful.
In Fig. 2 the results on how the use of integer and frac-
tional controllers affect the performance of the control
loop for different values of α and τ0 are shown. It can
be appreciated that an increase of the fractional order
α, which entails higher overshoots and more oscillatory
transient responses, produces a more appreciable effect on
the integrator fractional order λ. In Fig. 3 is shown how the
integrator fractional order λ varies according to the values
of α and τ0. It is interesting to note that, when α = 1,
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Figure 2. Jn(PI) behavior for PI and FOPI controllers with
MS = 1.4
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Figure 3. λ behavior for FOPI controller with MS = 1.4
there is no point in using a FOPI controller, because the
fractional integrator does not improve the performance.
These results are in line with the ones presented in (Padula
and Visioli, 2011), where it is shown that the optimal
value of λ is always unitary when controlling first-order
processes. On another side, it can be seen that the effect
of the fractional parameter λ tends to be bigger when the
normalized dead time is short.
For MS = 2.0, the fractional order α also was considered
in the range 1.0 ≤ α ≤ 1.7 in the tuning of PI and FOPI
controllers due to the same reasons mentioned above.
Fig. 4, shows how both types of controllers modify the per-
formance of the closed-loop system. It can be appreciated
again how an increase of the fractional order α allows a
greater action of the fractional integrator order λ, as well
as, its effect over the performance tends to be less when
the normalized dead time increase. Through a comparison
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Figure 4. Jn(PI) behavior for PI and FOPI controllers with
MS = 2.0

of the results obtained for MS = 1.4 and MS = 2.0, it
can be seen how there is a bigger distance between the
performance reached with PI and FOPI controllers when
the constraint in the robustness is given by a MS = 1.4. It
means that the fractional integrator order λ is useful in the
control of processes when a high robustness is required.

3.2 PID vs FOPID controllers

In this section, the performance assessment for FOPID/PID
controllers is presented. We consider first the MS = 1.4
case. For both types of controllers, the fractional order of
the process model is selected in the range 1.0 ≤ α ≤ 1.9.
Values of α greater than 1.9 were not taken into account
because the process becomes practically an undamped
second-order system, which is unlikely to be encountered
in practical applications.
The results obtained using both types of controllers are
shown in Fig. 5 and in Fig. 6.
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Figure 5. Jn(PID) behavior for PID and FOPID controllers
with MS = 1.4 and 1.0 ≤ α ≤ 1.4
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Figure 6. Jn(PID) behavior for PID and FOPID controllers
with MS = 1.4 and 1.5 ≤ α ≤ 1.9

It can be seen in Fig. 5 that when MS = 1.4, for processes
with 1.0 ≤ α ≤ 1.1 (this range includes overdamped
and critically-overdamped processes), the control system
performance improvement can be up to 11%, thanks to the
use of FOPID controllers. Again, the value of the Jn(PID)
index tends to increase when the normalized dead time
increases.
As it can be appreciated in Fig. 5 and Fig. 6, when the
fractional order α increases from 1.0 to 1.5, the Jn(PID)
index grows, but from 1.5 to 1.9, the Jn(PID) index
tends to decrease, which is an indicator of a remarkable
performance in the control loop provided by the use of
the fractional order µ associated to the derivative action.
For example, it can be seen that for a fractional order
α = 1.9, the improvement in the performance of the closed-
loop system can reach values up to 60% due to the use of
FOPID controllers.
It is important to mention that the greatest difference in
the performance provided by PID and FOPID controllers
is obtained in the range 0.5 ≤ τ0 ≤ 1.5 and when the
fractional order α varies from 1.2 to 1.9. This also can be
appreciated in Fig. 7 and Fig. 8 that show how in a general
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way the highest values of the derivative fractional order µ
are located in that range.
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Figure 7. µ behavior for FOPID controller with MS = 1.4
and 1.0 ≤ α ≤ 1.4
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Figure 8. µ behavior for FOPID controller with MS = 1.4
and 1.5 ≤ α ≤ 1.9

The results of the performance of the control systems
obtained using PID and FOPID controllers tuned for
MS = 2.0 are shown in Fig. 9 and Fig. 10.
For this case, again, Fig. 9 and Fig. 10 show how the
Jn(PID) index increases in general when the fractional
order α goes from 1.0 to 1.5, but from this last value to
α = 1.9 it decreases and therefore a better performance in
the closed-loop is reached using FOPID controllers.
Moreover, can be seen how the best performance through
FOPID controllers is achieved, for the most of the com-
binations between the fractional order α and the nor-
malized dead time τ0, when τ0 is selected in the range
0.5 ≤ τ0 ≤ 1.5.
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Figure 9. Jn(PID) behavior for PID and FOPID controllers
with MS = 2.0 and 1.0 ≤ α ≤ 1.4

4. SIMULATION EXAMPLE

As an illustrative example, consider an oscillatory process
studied in (Das et al., 2018) and defined by the transfer
function
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Figure 10. Jn(PID) behavior for PID and FOPID con-
trollers with MS = 2.0 and 1.5 ≤ α ≤ 1.9

e−s

9s2 + 2.4s+ 1 . (17)

Using the program IDFOM devised in (Guevara et al.,
2015), the fractional-order model

e−2.2594s

4.8270s1.4504 + 1 . (18)

has been identified. The controllers PI, FOPI, PID and
FOPID have been tuned for MS = 1.4. The responses of
the designed control systems against step changes in the
set-point value and in load disturbance signal are shown
in Fig. 11. As expected, fractional controllers improves
significantly the performance achieved by using integer
controllers. In Table 1 the parameters of the different
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FOPID

PID

FOPI

PI

Figure 11. Controlled output using PI, FOPI, PID and
FOPID controllers for MS = 1.4

controllers as well as the performance index Je are shown.
From these results, the index Jn(PI) exhibits an improve-
ment of the performance in the closed-loop system of
around 11.3% and the index Jn(PID) an improvement of
approximately 2.6%, both due to the contribution of the
fractional parameters of the FOPI/FOPID controllers.

Table 1. Controller parameters for MS = 1.4
and Je index

PI FOPI PID FOPID

Je 29.19 25.88 14.21 13.84
Kp 0.1466 0.2185 0.4559 0.6705
Ti 2.1406 3.6846 2.8384 3.9211
λ − 1.1440 − 1.0000
Td − − 2.1791 1.9053
µ − − − 1.2006

5. CONCLUSIONS

This paper quantitatively evaluates the advantages achiev-
able in a process control context due to the combined
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use of FOPID controllers and fractional models. On the
one side, the fractional model allows the representation
of different dynamics without the need to change the
structure of the model, as happens when integer models are
employed. On the other side, it is demonstrated through
the JnPI and JnPID performance indexes that the use of
fractional controllers provides a better performance when
also robustness considerations are taken into account.
The optimization functional proposed in this paper pro-
vides an optimal trade-off between set-point tracking and
load disturbance rejection performance. Finally, the ro-
bustness issue is explicitly considered by constraining the
maximum sensitivity. For a practical implementation in
industry, a controller should meet all the aforementioned
objectives.
The several results shown in Section 3 allow the deduction
that the fractional derivative order µ has a most notable
impact on the closed-loop system performance with re-
spect to the fractional integrator order λ.
It is believed that the proposed results provide the ele-
ments for the potential user to decide whether it is worth
using a (more complex) fractional controller for a real-
world application.
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