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Abstract: This paper presents a multi-variable Model Predictive Control (MPC) based
controller for the one-staged refrigeration cycle model described in the PID2018 Benchmark
Challenge. This model represents a two-input, two-output system with strong nonlinearities
and high coupling between its variables. A general purpose optimal control problem (OCP)
solver Matlab toolbox called RIOTS is used as the OCP solver for the proposed MPC scheme
which allows for straightforward implementation of the method and for solving a wide range
of constrained linear and nonlinear optimal control problems. A conditional integral (CI)
compensator is embedded in the controller to compensate for the small steady state errors. This
method shows significant improvements in performance compared to both discrete decentralized
control (C1) and multi-variable PID controller (C2) originally given in PID2018 Benchmark
Challenge as a baseline. Our solution is introduced in detail in this paper and our final results
using the overall relative index, J , are 0.2 over C1 and 0.3 over C2, respectively. In other
words, we achieved 80% improvement over C1 and 70% improvement over C2. We expect to
achieve further improvements when some optimized searching efforts are used for MPC and CI
parameter tuning.

Keywords: Model predictive Control, RIOTS, Optimal Control Problems Solver, PID2018
Benchmark Challenge, performance improvement.

1. INTRODUCTION

Vapor-compression refrigeration systems are very impor-
tant and are applied extensively in domestic, commercial
and industrial refrigeration. They consume a great deal
of energy. For example, about 30 percent of total energy
around the world is used by heating, ventilating and air
conditioning processes according to Buzelin et al. (2005).

Control of the refrigeration systems is necessary for not
only higher temperature accuracy but also lower en-
ergy consumption. There are, however, many difficulties
in controller design for these systems considering some
of their characteristics such as high inertia, dead time,
? Corresponding author: Professor YangQuan Chen
(yqchen@ieee.org). A. Ates is supported by The Scientific
and Technological Research Council of Turkey (TUBITAK-BIDEP)
with 2214/A program number. Y. Zhao and J. Yuan are supported
by China Scholarship Council.

high coupling and strong nonlinearities (Bejarano et al.
(2017b)). Many researchers have studied the design of
controllers for refrigeration systems. There are traditional
methods such as feedback control (Thybo et al. (2002)),
proportional-integral control with feed-forward compensa-
tion (Hattori et al. (1990)), and adaptive control (Shah
et al. (2004)). There are also advanced control methods
such as fuzzy control (Becker et al. (1994)), neural-network
control (Sakawa et al. (1995)), model predictive control
(Hovgaard et al. (2012)) and hybrid control (Razi et al.
(2006); Sarabia et al. (2009); Ricker (2010)).

Model predictive control is particularly advantageous to
control systems with constraints, non-minimum phase and
large-scale multi-variable processes (Richalet (1993); Abu-
Ayyad and Dubay (2007)). Utilizing Recursive Integration
Optimal Trajectory Solver (RIOTS) toolbox as the solver
for solving dynamic on-line optimization in MPC frame-
work, allows for introduction of RIOTS based model pre-
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dictive control (Tricaud and Chen (2008a)) and fractional-
order model predictive control (Zhao et al. (2014)). With
its powerful optimization capability, RIOTS based model
predictive control can handle trajectory and end status
constrains, control constraints, integral and endpoint cost
functions, nonlinearities and coupling.

Due to these benefits, a RIOTS based model predictive
control enhanced by a conditional integral control is pro-
posed to control the refrigeration system introduced in
PID2018 benchmark problem (Bejarano et al. (2017a))
and the results are compared with the results shown in
the main document. The rest of this paper is organized as
follows.
In section 2, theory background for MPC is presented,
RIOTS toolbox is introduced, and the benchmark prob-
lem is briefly described in order to provide the necessary
background for control system design. The details of im-
plementing the RIOTS based MPC for the benchmark
problem are discussed in section 3. The results of the
implementation are showed in section 4 and comparisons
are made with the results shown in Bejarano et al. (2017a).
Finally section 5 concludes the article by summarizing the
achievements and pointing out the potential future works.

2. THEORY AND BACKGROUND

2.1 MPC

First established in 1970’s, the present-day MPC can
be classified into DMC (Dynamic Matrix Control), GPC
(Generalized Predictive Control), EHAC (Extended Hori-
zon Adaptive Control), etc. Based on same working prin-
ciple, these MPC methods include common three com-
ponents: predictive behavior based on a process model,
optimization based on certain cost function and receding
horizon (the control input is updated at every step). State-
space model is widely used in MPC for it can be extended
to multi-variable cases in a straightforward manner. Con-
sider a general plant model described by the following form{

x(i+ 1) = Ax(i) +Bu(i) + w(i)

y(i) = Cx(i) +Du(i) + v(i)
, (1)

where x(i) ∈ Rnx , u(i) ∈ Rnu and y(i) ∈ Rny are the
system state, input and output respectively. w(i) and v(i)
are the state noise and measurement noise, which are
assumed to be Gaussian with zero mean.

The process model is the cornerstone of MPC, it allows
the predictions to be calculated. The prediction for model
described in Eq. 1 is given by{

x̂(i+ k + 1|i) = Ax̂(i+ k|i) +Bu(i+ k|i)
ŷ(i+ k|i) = Cx̂(i+ k|i) +Du(i+ k|i) , (2)

where x̂(i + k + 1|i) is the one-step estimate of the state,
ŷ(i+ k|i) stands for estimate of system output from time
t + 2 to t + Np, and Np is predictive horizon. In order to
realize that the future output on the considered horizon
should follow a determined reference signal, the following
general expression of objective function is introduced

J =

Np∑
k=1

[ŷ(i+k|i)−r(i+k)]TWy[ŷ(i+k|i)−r(i+k)], (3)

where r(i+k) stands for reference input at instant i+k and
Wy ∈ Rny×ny is a positive define matrix. Index J in Eq. (3)

is applicable to both SISO and MIMO systems. Implicit
interaction can be dealt with for MIMO systems in MPC.
In practice all processes are subject to constraints, so it is
common to have the following constraints,

umin < u(i) < umax
xmin < x(i) < xmax
ymin < y(i) < ymax

. (4)

The future control output series for a determined horizon
Nu are predicted at each instant t using the process model.
But the next control signals calculated is rejected. The op-
timization is repeated with new value and all the sequences
are brought up to date using the receding horizon concept.
The set of future control signals is calculated by optimizing
the cost function 3 with constraints 4 to keep the process
as close as possible to the reference trajectory.

2.2 RIOTS: A MATLAB TOOLBOX FOR SOLVING
OPTIMAL CONTROL PROBLEMS

RIOTS which stands for Recursive Integration Optimal
Trajectory Solver ( Schwartz et al. (1997a),Schwartz et al.
(1997b)) is a Matlab toolbox developed to solve a broad
class of linear and nonlinear optimal control problems.
RIOTS toolbox can be used to solve optimal control
problems described as follows

min
(u,ξ)∈Lm

∞×Rn
f(u, ξ) = go(ξ, x(b)) +

∫ b

a

lo(t, x, u)dt (5)

subject to:

ẋ = h(t, x, u), x(a) = ξ, t ∈ [a b]

ujmin(t) < uj(t) < ujmax(t)

ξjmin(t) < ξj(t) < ξjmax(t)

lvti(t, x(t), u(t)) ≤ 0, v ∈ Qti
gvei(ξ, x(b)) ≤ 0, v ∈ Qei
gvee(ξ, x(b)) = 0, v ∈ Qee

(6)

where x(t) ∈ Rnx , u(t) ∈ Rnu , g : Rnx × Rnx → R,
l : R×Rnx ×Rnu → R, h : R×Rnx ×Rnu → Rnx .

The functions g(·, ·) and l(·, ·, ·) are subscripted with o,
ti, ei, and ee, each of which stands for objective function,
trajectory constraint, endpoint inequality constraint, and
endpoint equality constraint respectively. Depending on
the nature of the optimal control problem, it can be solved
for both the optimal control u and one or more optimal
initial state ξ.
RIOTS is a very powerful toolbox for solving optimal
control problems and it has already been proposed to solve
fractional optimal control problems (Tricaud and Chen
(2008b, 2009)). Nowadays with all the advancements in
computers technology and computation speed, implemen-
tation of Model Predictive Control for real-time control
of systems has been made possible. With MPC scheme,
the open-loop optimal controller solver, RIOTS, can be
converted to a powerful closed loop control tool with very
straightforward implementation thanks to the significant
flexibility of RIOTS for solving general optimal control
problems. Based on this idea, the RIOTS based MPC, was
introduced in Tricaud and Chen (2008a) and was called
RMPC. In this paper, RMPC is utilized along with an
embedded conditional integral compensator to control the
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nonlinear and highly coupled MIMO refrigeration system
with constraints on control input.

2.3 PID2018 Benchmark Challenge

Here the PID2018 Benchmark Challenge (Bejarano et al.
(2017a)) is briefly described from control design perspec-
tive to introduce the later-used parameters and variables.
The original refrigeration model plus the control system
is shown in Fig.1. The model represents a two-input, two-
output system where the two outputs/controlled-variables
are: the outlet temperature of evaporator secondary flux,
Tsec evap out, and the degree of superheating, TSH, and
the two inputs/manipulated-variables are: the expansion
valve opening, Av, and compressor speed, N . The ma-
nipulated variables Av and N are subjected to limits,
Av ∈ [10, 100] and N ∈ [30, 50], and are saturated within
the system block. The system is initialized with values
reported in Table 1 for the manipulated and controlled
variables. Please note that the ranges and initial values for
other variable of the refrigeration model are not reported
here as they are not used in controller design process.
The objective is to replace the controller block in Fig. 1
and replace it with the designed controller block.

Table 1. Initial operating values for the manip-
ulated and controlled variables

Variable Value Units

Av
∼= 48.79 %

N ∼= 36.45 Hz
Tsec evap out

∼= −22.15 ◦C
TSH ∼= 14.65 ◦C

3. IMPLEMENTATION DETAILS

Model predictive control is a model based method and
therefore this method requires a model of the refrigeration
system. However, a rough model that only grasps the
dynamic behavior of the system would be sufficient even
if there is inaccuracy in steady state behavior of the
model. Considering that the system has non-zero initial
condition, and it is MIMO system, the best way to obtain
a simple model of the system would be the state-space
identification of the system. In order to do so, Matlab’s
system Identification toolbox is used to obtain a state-
space model of the system based on the system’s step
response. A fourth order state-space model was obtained:{

ẋ = Ax+Bu

y = Cx+Du
. (7)

In RMPC (RIOTS based MPC), the full-state information
of the system is required. Therefore, the states of the
system must be either measured directly or estimated
using an observer. Since the identified model in Eq.7 is
of forth order and the system provides only two feedbacks,
the intermediate states must be estimated. Here, the
Luenberger observer (Luenberger (1971)) is utilized to
estimate the intermediate states according to:

˙̂x = (A−GC)x̂+Gy +Bu, (8)

where the gain matrix, G, is designed so that the eigenval-
ues of A−GC are placed at [−1,−2,−3,−4]. The Observer
structure is represented in Fig.2 where the SIMULINK

model of the whole controller plus observer is shown.
The objective function for the optimal control problem
solver of the RMPC was selected as shown in Eq.9 and is
combined of end-point cost function and trajectory cost
function

J = (y(Np)− r)TWy(y(Np)− r)+∫ Np

0

((y(Np)− r)TWy(y(Np)− r))dt,
(9)

where Np is prediction horizon, y(Np) is system output at
instant Np, and Wy is weight matrix for system output
error. For this problem, the weight matrix and prediction
horizon are chosen as

Wy =

[
2.5 0
0 2

]
, Np = 10.

To compensate the steady state error, a conditional inte-
gral compensator is added to the RMPC code. Introducing
the vectors rd to be the desired output vector or the
system reference, rMPC to be the the reference given to
the optimal control problem solver, and y to be the system
measured output, then the integral compensator modifies
the RMPC reference to compensate the steady state error
with the following structure:

rMPC(k+ 1) = rd(k+ 1) +KI

∑
i

(rd(i+ 1)− y(i)). (10)

Here the index of summation i stands for any point in
time up to the current time when the error rd(i + 1) −
y(i) is less than some threshold eth. The threshold for
the error is considered to avoid addition of big errors
during the transients and therefore not to make the system
oscillatory while completely compensating for steady state
error. Please note that since the system in the benchmark
problem has two outputs, rd, rMPC , and y are vectors of
size two and KI , the integral gain, is a diagonal two-by-two
matrix. The integral gain matrix and the error summation
threshold values are chosen to be:

KI =

[
0.2 0
0 0.25

]
, eth =

[
0.05
0.3

]
.

It is noteworthy that RIOTS toolbox allows for imposing
lower and upper limits to the control inputs in defining the
optimal control problem. Therefore, the limits mentioned
in section 2.3 on the inputs, compressor speed and valve
opening, are already embedded in the controller design
and the RMPC will not provide control inputs that are
out of the range to the system and there will not be any
saturation.

Guidelines for Tuning The RMPC plus conditional
integral compensator scheme offers considerable flexibility
with the number of tunning knobs that it provides. In the
current scheme the weights for end-point cost function and
trajectory cost function in the objective function, Eq. 9,
are identical to simplify the tuning by reducing a knob.
The weight matrix Wy and integration gain matrix KI

were tuned by starting from value 1 for both diagonal
element and changing the values by try and error in the
direction that reduces the overall index, J, mentioned in
section 4. The horizon, Nu was chosen by decreasing it’s
value as long as it doesn’t damage the results to reduce
the simulation time. The threshold values in vector eth
for conditional integration was obtained by measuring the
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Fig. 1. The original PID2018 Benchmark Challenge model

Fig. 2. The SIMULINK model of the designed Controller block including the observer and the main RMPC function
block.

maximum error between references and each output after
early settlement of the system upon each disturbance or
change in reference.

4. RESULTS AND DISCUSSION

In this section the results for implementation of the RMPC
method explained in section 3 are reported. Moreover,
qualitative and quantitative comparisons are made be-
tween these results and the results presented in PID2018
Benchmark Challenge main document (Bejarano et al.
(2017a)) for discrete decentralized PID (Controller 1) and

multi-variable PID (Controller 2).
Following Bejarano et al. (2017a) in representing the re-
sults, figures 3 and 4 show the controlled variables (out-
puts) and manipulated variables (inputs) for the system
controlled with designed RMPC respectively.

Since Controller 2 shows a better performance compared to
controller 1 according to the relative quantitative and qual-
itative comparisons made in Bejarano et al. (2017a), com-
parison figures are only shown for comparison of RMPC
with Controller 2, while the quantitative comparisons with
both controllers are shown in Table 2.
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Fig. 3. Controlled variables of MIMO Refrigeration Con-
trol System under RMPC

Fig. 4. Manipulated variables of MIMO Refrigeration
Control System under RMPC

As represented in Table 2, the proposed controller signif-
icantly outperforms both discrete decentralized PID and
multi-variable PID as it improves the overall index, J, by
80% compared to former and by 70% compared to latter.

The improvement in results can be explained by look-
ing at comparison of system outputs for RMPC versus
multi-variable controller (Controller 2) in Fig. 5 and Fig.6
where we observe better transient response and significant
steady-state error compensation for RMPC results recep-
tively.
It is worth mentioning that around time equal to 9 min-
utes, when a reference change happens for TSH, the com-
pressor speed becomes saturated for both controllers (Fig.
7) and as a result some error on the outputs at this moment
is unavoidable regardless of the controller utilized (Fig. 5).
However, as it is obvious from quantitative comparisons
(Table 2) and it is visually observable from Fig. 5, the
overall error on the two outputs are optimized for RMPC
compared to Controller 2.

Table 2. Quantitative Comparison of RMPC
with Controller 1 and 2

index RMPC vs C1 RMPC vs C2

RIAE1 0.2134 0.6079
RIAE2 0.1047 0.2348
RITAE1 0.1943 0.1207
RITAE2 0.0080 0.0439
RITAE2 0.0120 0.0377
RITAE2 0.0241 0.1883
RIAV U1 1.1481 1.0175
RIAV U2 1.0938 0.7961

J 0.2055 0.2988

5. CONCLUSION

A model predictive control scheme using a general pur-
pose control problem solver, RIOTS, with an embedded

Fig. 5. Controlled variables comparison for multivariable
PID control system versus RMPC

Fig. 6. Steady state error comparison for RMPC (red)
versus multi-variable PID (blue), dashed line shows
reference.

Fig. 7. Manipulated variables comparison for multivariable
PID control system versus RMPC

conditional integral compensator is designed to control the
refrigeration system model presented in PID2018 Bench-
mark Challenge. The controller shows remarkable per-
formance compared to PID controllers presented in Be-
jarano et al. (2017a) improving both system transients and
steady-state response. It is noteworthy that implementa-
tion of RMPC is very straightforward thanks to the RIOTS
package shadowing the only presumed advantage of PID
controllers which is simple implementation.
There is still plenty of room for improvement regarding
this method as a very rough model is used and the param-
eters are not optimally tuned. Introducing convolutional
kernel in the conditional integral compensator to make the
integral of fractional order is an idea for future works.
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Bejarano, G., Alfaya, J., Rodŕıguez, D., Ortega, M., and Morilla, F.

(2017b). BENCHMARK PID 2018.
Buzelin, L., Amico, S., Vargas, J., and Parise, J. (2005). Experimen-

tal development of an intelligent refrigeration system. Interna-
tional Journal of Refrigeration, 28(2), 165–175.

Hattori, M., Nomura, T., Ueno, Y., and Kato, H. (1990). Automotive
refrigeration system controller with a simple precompensator.
In Decision and Control, 1990., Proceedings of the 29th IEEE
Conference on, 1590–1591. IEEE.

Hovgaard, T.G., Larsen, L.F., Edlund, K., and Jørgensen, J.B.
(2012). Model predictive control technologies for efficient and
flexible power consumption in refrigeration systems. Energy,
44(1), 105–116.

Luenberger, D. (1971). An introduction to observers. IEEE
Transactions on Automatic Control, 16(6), 596–602.

Razi, M., Farrokhi, M., Saeidi, M., and Khorasani, A.F. (2006).
Neuro-predictive control for automotive air conditioning system.
In Engineering of Intelligent Systems, 2006 IEEE International
Conference on, 1–6. IEEE.

Richalet, J. (1993). Industrial applications of model based predictive
control. Automatica, 29(5), 1251–1274.

Ricker, N.L. (2010). Predictive hybrid control of the supermarket
refrigeration benchmark process. Control Engineering Practice,
18(6), 608–617.

Sakawa, M., Kato, K., Misaka, M., and Ushiro, S. (1995). Cooling
load prediction through recurrent neural networks. In Fuzzy Sys-
tems, 1995. International Joint Conference of the Fourth IEEE
International Conference on Fuzzy Systems and The Second In-
ternational Fuzzy Engineering Symposium., Proceedings of 1995
IEEE Int, volume 1, 421–426. IEEE.

Sarabia, D., Capraro, F., Larsen, L.F., and de Prada, C. (2009).
Hybrid NMPC of supermarket display cases. Control Engineering
Practice, 17(4), 428–441.

Schwartz, A., Polak, E., and Chen, Y.Q. (1997a). Homepage
of RIOTS —the most powerful optimal control problem solver
http://www.schwartz-home.com/riots/.

Schwartz, A., Polak, E., and Chen, Y.Q. (1997b). RIOTS Man-
ual: A Matlab toolbox for solving optimal control problems
http://mechatronics.ucmerced.edu/riots.

Shah, R., P Rasmussen, B., and Alleyne, A.G. (2004). Application
of a multivariable adaptive control strategy to automotive air
conditioning systems. International Journal of Adaptive Control
and Signal Processing, 18(2), 199–221.

Thybo, C., Izadi-Zamanabadi, R., and Niemann, H. (2002). Toward
high performance in industrial refrigeration systems. In Control
Applications, 2002. Proceedings of the 2002 International Con-
ference on, volume 2, 915–920. IEEE.

Tricaud, C. and Chen, Y. (2008a). Linear and nonlinear model
predictive control using a general purpose optimal control problem
solver RIOTS 95. In Control and Decision Conference, 2008.
CCDC 2008. Chinese, 1552–1557. IEEE.

Tricaud, C. and Chen, Y. (2008b). Solving fractional order optimal
control problems in riots 95a generalpurpose optimal control
problem solver. In Proceedings of the 3rd IFAC Workshop on
Fractional Differentiation and its Applications. Citeseer.

Tricaud, C. and Chen, Y. (2009). Solution of fractional order optimal
control problems using svd-based rational approximations. In
American Control Conference, 2009. ACC’09., 1430–1435. IEEE.

Zhao, T., Li, Z., and Chen, Y. (2014). Fractional order nonlinear
model predictive control using RIOTS 95. In Fractional Dif-
ferentiation and Its Applications (ICFDA), 2014 International
Conference on, 1–6. IEEE.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

887


