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Abstract: Control loop performance monitoring methods to detect problems in PID loops are developed 
and tested using industrial data sets. The data is captured from the process, passed on to the researcher 
who tries out new detection and diagnosis methods. The data is not generally shared with other 
researchers working on similar problems. The authors therefore have implemented a data repository to 
categorise and store the data so that it becomes accessible to all researchers. Existing methods can be 
compared and enhanced using the data sets. This paper describes the context of CPM as well as the data 
repository. The repository is set up, hosted and maintained by the South African Council for Automation 
and Control using a professional web developer. 
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1. INTRODUCTION 

The majority of controllers in the process industries are 
single-input-single-output control loops using a PID control 
algorithm (Åström and Hägglund, 1995). Although 
successful and widespread in its applications, studies 
consistently find that a large proportion of PID control loops 
are not fulfilling their task to their best potential, that is, they 
are performing ‘poorly’ (Vilanova and Visioli, 2012).  

Many algorithms and methods have been developed to detect, 
diagnose control loops that are performing poorly for various 
reasons (Jelali, 2012), which in this paper will be referred to 
as control loop performance monitoring (CPM). This paper 
does not want to give an overview of the methods available 
but rather refers to the appropriate literature (Huang and 
Shah, 1999, Ordys et al., 2007, Choudhury et al., 2008, Jelali 
and Huang, 2010). A fraction of these methods are 
implemented in industrial software tools. In Bauer et al., 
(2016), a survey of the current state of the art in control loop 
performance management reveals that the majority of 
responding production companies uses a solution to monitor 
the performance of the controllers. All commercially 
successful methods have been tested on industrial data from 
actual processes. 

To understand the dynamics for developing performance 
algorithms it is necessary to examine the involved parties. 
First, there are production companies in the various 
industries. In the process industries, the production 
companies own the plant as well as the plant data. In other 
industries, such as the aviation industry, equipment 
manufacturers may own the data. 

Technology suppliers provide specialized solutions and 
consulting services for operation and management of the 
plant. These providers can be in-house departments or 
external companies. A third party are academic researchers at 
universities and other research institutions who develop new 
algorithms, trying to solve research problems.  

All three parties have different motivations. Production 
companies want to ensure stable and safe plant operation 
while technology suppliers are looking to sell their solution 
or services to achieve that. Academics, on the other hand, are 
measured by publication outputs and increasingly by 
acquisition of additional monetary funds. Government 
programs such as the research programs by the European 
Union provide grants for industry relevant projects.  

 
Fig. 1. Interaction between production companies, technology 
providers and academic institutions.  
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Presently, the situation of software and algorithm 
development can be described as follows. When developing 
CPM algorithms to detect poorly performing loops individual 
datasets are used to test performance monitoring methods and 
these are generally not shared with the research community. 
This is particularly troublesome because the methods are 
data-driven, that is, require process data. It becomes therefore 
difficult to compare and evaluate different methods. In the 
end, it also hinders the development of the best methods that 
reliably can identify potential problems in a plant. 

In recent years the government initiative Industrie 4.0 – 
referring to the fourth industrial revolution – has driven 
developments in control and automation. While previous 
industrial revolutions dealt with mechanization, 
electrification and digitalization, the fourth industrial 
revolution connects equipment and processes via 
communication networks and improves production efficiency 
through smart planning and optimization. A key requirement 
for the pervasiveness of Industrie 4.0 is the introduction of 
standards. For CPM this means that we need recommended 
and standardized methods to identify process faults.  

Bearing this in mind, the authors of this paper propose the 
introduction of a freely accessible database or repository for 
industrial process data to develop CPM algorithms. The data 
in this repository is clearly defined and represents common 
faults in the process industry from the actuator, sensor or 
process itself. The aim is to make industrial data available to 
researchers who develop methods for the detection of poorly 
performing loops.  

An example of the impact that a benchmark data base can 
have on developing comparable research methods and results 
is that of the Tennessee Eastman fault diagnosis benchmark, 
developed by Jim Downs and Ernie Vogel of Eastman 
Chemical Company in Kingsport, Tennessee (Downs and 
Vogel, 1993). This simulated database consists of normal and 
fault data of a chemical engineering process, and was made 
accessible by the Matlab Simulink implementation by Larry 
Ricker1. The impact on fault diagnosis research has been 
large and the research article has been cited by over 1000 
papers using the benchmark as a comparative platform.  

The availability of a standard benchmark has promoted 
systematic research effort: not only can the performance of 
different methods be fairly assessed on the same data but the 
familiarity of the benchmark allows researchers to focus on 
the methods, and not the data collection. 

Even though the Tennessee Eastman benchmark is popular 
with fault diagnosis research, some limitations are present in 
this dataset, discussed here. Since the origin of the data is a 
simulation, the true complexity of real online data – 
especially in terms of noise, outliers and missing data – is not 
sufficiently captured. The excitation of the data during 
normal operating conditions is also simplistic, which would 
result in developed algorithms being subject to false alarms. 

                                                
1https://depts.washington.edu/control/LARRY/TE/download.
html 

Another example of a benchmark data base is the UC Irvince 
Machine Learning Repository [Lichman, 2013]. This 
repository contains 416 datasets, each dataset with detailed 
metadata, including relevant papers and papers that cite the 
dataset. From Google Scholar, this repository and its website 
have been cited more than 5 000 times since 2007. 

In this paper, we describe the underlying prerequisites, 
approaches and implementation issues for such a data 
repository. To the knowledge of the authors, no such 
repository accessible to everyone currently exists. Section 2 
describes the nature of industrial process data and the issues 
that can occur when analysing the data. Section 3 outlines the 
key features of such a data repository including the file and 
data structures. When discussing the idea of a data repository 
with control engineering colleagues many suggestions to 
further resources that can be published on such a platform 
were proposed. Section 4 therefore gives the limitations of 
the first version of the repository and proposes possible 
extensions to the platform. Section 5 concludes the initiative 
of setting up such a database.  

2. INDUSTRIAL PROCESS DATA 

With the development of IT solutions, communication and 
computational capabilities, industrial process data has been 
under intense scrutiny. Buzz words such as ‘big data’, ‘data 
analytics’ and ‘data scientists’ have infiltrated automation 
vendors and production companies alike (Lee et al., 2014). 
The hype has to be taken with some caution because process 
data has been around since the widespread introduction of 
distributed control systems (DCS) in the 1980s and not much 
has changed in the use and storage of these systems.  

The motivation to use process data analytics to improve 
process performance is simple: data analytics are non-
invasive and comparatively cheap to use. Many problems 
occurring during operation manifest themselves in the time 
trend data of the process. For example, a malfunctioning, 
sticky flow valve controlling the stream in a heat exchanger 
often introduces nonlinear, discernable oscillations in the 
controlled temperature. Experts can look at process data and 
pick out – with some accuracy – specific problems. The aim 
of CPM is to automatically detect, identify and categorize 
common problems, which affect the operation of the plant.  

This section describes the data formatting and origin in the 
process industries. Also, the most common mistakes that can 
occur when analysing plant data are discussed. The result of 
this experience is to focus on relevant and clearly 
distinguishable time trends, which are described towards the 
end of this section. 

2.1 Data historians and format 

Modern industrial plants capture the time series data 
generated by the controllers on the DCS, which in turn passes 
the data on to a plant historian, also known as data historian 
or operational historian. An overview of the system 
architecture is shown in Fig. 2.  
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Fig. 2. System architecture from sensor to plant historian. 

The plant historian stores the data in an SQL or similar 
database (SQL+ and Hadoop are some examples). The data 
can be displayed, analyzed and filtered by time selection as 
well as tag criteria more or less comfortably. Examples of 
common plant historians are the PI historian by OSIsoft, IP21 
by Aspentech or 800xA history by ABB. These historians 
store the data with a timestamp and most commonly provide 
an export functionality that allows exporting the data in .csv 
format. 

2.2 Pitfalls of data-based performance analysis 

There are certain mistakes that are easy to make when 
analyzing plant data – for beginners as well as experts. This 
section describes the authors’ experiences when dealing with 
the analysis of process data for industrial production plants. 
Often, this occurs when academics are approached by 
industry to assist with the detection and development of CPM 
algorithms. The authors believe that this experience is made 
by many control practitioners in similar situations.  

Too much data The authors have experienced the following 
situation. A control engineer at an industrial production site 
approaches a researcher. The control engineer often has very 
little time at their hand because she is responsible a large 
number of control loops. She would be thrilled to get help on 
the most poorly performing loops in order to stabilize the 
process and improve efficiency. At a first meeting the control 
engineer hands over a complete data set of the plant, often 
with the comment: “How much data do you want?”, meaning, 
are two months enough or would you like to have the whole 
two years.  

This assumption is that the database can be entered into one 
very smart algorithm, which extracts the most commonly 
known problem. In fact, some commercial solutions promise 
exactly that. However, due to the nature of the different 

dynamic behaviour of production sites, the authors argue that 
with current algorithms it is at the present time impossible to 
get meaningful insights into the plant by looking at the entire 
data repository. It is crucial to know what to look for. Expert 
knowledge of an experienced engineer relating to the process 
and the measurements in question is currently always 
required to get meaningful results. The purpose of the data 
repository described in this paper is to work against the flood 
of data and provide data that has been processed and 
reviewed by experts.  

False positives Just how difficulty it is to reliably detect 
process upsets becomes evident when examining real time 
trends in all its variations and exceptions. The assumption 
often made is that process data is always stationary and 
shows non-stationary characteristics can be seen from the 
sample data trends in Fig. 3. These time trends shown are all 
examples of normal process operations and are clearly 
fluctuating and in the case of the plot on the left shows a 
regular pattern. The trends exemplify that the time trend data 
can take on any form. It is important to test methods have to 
be tested against any variation to identify false positive faults. 
The data repository contains examples of these trends that are 
observed during normal operation but appear to be 
disturbances.  

Time window selection Another difficulty is the selection of 
the start and end time of a disturbance. If a disturbance 
persists for longer it may be feasible to extend the period but 
for most methods it is helpful to exclude non-stationary data, 
that is, periods where the variable is fluctuating with low 
frequencies. This is because other plant upsets will temper 
with the analysis of most methods. Mostly it is a good idea to 
wait until the disturbance has established itself before 
capturing the data. Furthermore, some troublesome 
disturbances occur for a short period of time only. Data 
analysis algorithms often do not work on such a short 
selection so the data cannot be used for analysis.  

2.3 Data categorization 

There is an abundance of data generated in modern process 
plants. It is easy to get lost in the shear amount of data. 
Control engineers and ultimately CPM algorithms looking at 
the data need to focus on clearly discernible problems that 
can be detected in the time trends.  
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Fig. 3. Two examples of normal operating process data.  
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Fig. 4. Feedback control loop with fault categories from 
Bauer et al. (2016).  

These problems have been identified by plant personnel and 
been recorded in the literature. Several overview articles have 
been published in recent years giving an overview of 
problems and methods alike. The fault categories and 
examples in the data repository described in this article are 
aligned with the findings in Bauer et al. (2016). Firstly, the 
faults can be sorted according to where in the control loop the 
fault originates. Fig. 4 is taken form the same article and 
shows a SISO feedback control loop with the key elements: 
controller, actuator, process and sensor. Something can go 
wrong with all of these elements and the most common faults 
are indicated on top of the element in Fig. 4. The height of 
the box indicates the frequency with which the faults are 
observed. According to the survey of Bauer et al. (2016) the 
most common problems are wrong tuning settings and valve 
stiction, followed by equipment degradation and sensor 
faults. 

The faults listed in Fig. 4 often lead to deviation from the 
desired setpoint and manifest themselves in characteristic 
time trends. An expert can often identify valve stiction from 
the characteristic nonlinear oscillation. There are more than a 
dozen algorithms to detect valve stiction (Jelali, 2012). Other 
examples of data from which control engineering 
practitioners can identify faults are saturation where the 
controlled variable does not exceed a certain threshold 
because of physical constraints, sluggish or slow oscillation 
which are often due to poor tuning settings and quantisation 
issues in the sensor where the process variable is measured in 
intervals. Sinusoidal oscillations are common, too, and can a 
number of causes such as poor tuning, process upsets or 
external disturbances. Control loop monitoring methods are 
predominantly stochastic or databased and for these methods 
the correct data examples for detection is critical. 

3 INDUSTRIAL DATA REPOSITORY 

This website is a resource for industrial process data of PID 
loops. The data is contributed by industrial control 
practitioners as well as by academic researchers who work 
closely with industry. The aim of this repository is to provide 
a test environment for data that cannot be simulated as 
industrial data contains features that cannot be simulated.  

The purpose of the repository is to (i) develop robust control 
loop performance monitoring methods and (ii) compare 
existing methods to find the best method for different data 
trends and situations.  

This section describes the implementation platform as well as 
the file structure and the format the data is stored in. All data 
published on the platform has been screened and verified and 
this process is also described in this section.  

3.1 Implementation platform 

The data repository is hosted and maintained by the South 
African Council for Automation and Control (SACAC), 
which is the National Member Organisation of IFAC in 
South Africa. Like IFAC SACAC is a non-profit organization 
but supports the industry and in this instance the 
implementation, upkeep and maintenance of the repository. 
SACAC's website URL is: 

http://sacac.org.za/ 

The industrial data repository resides under the tab 
‘Resources’. The SACAC website uses Wordpress as its 
Content Management System (CMS) and is maintained by 
Sven Uhlig from Studio UHU. Although all the repository 
files are stored in a Dropbox account, the ‘Dropr’ plugin for 
Wordpress provides access from the SACAC website to the 
files. Queries and contributions can be sent to the following 
email address: piddata@sacac.org.za.  

3.2 File organization 

The data is organised into the fault criteria described in Sec. 
2.3.  Thus, the ten fault categories are as follows:  

1. Tuning settings e.g. aggressive or sluggish 
2. Valve stiction 
3. Saturation due to e.g. incorrect valve design 
4. Actuator faults – other 
5. Sensor faults 
6. Process faults e.g. fouling 
7. Interacting controllers 
8. Communication problems 
9. Other 
10. Unknown 

The underlined words are then taken up in the name of the 
file trend so that the name is a description of the trend. All 
data is stored in .csv format. The filename contains further 
information about the data set, namely the type of 
measurement (flow, temperature, pressure, level, other), the 
industry, the contributors surname and the year. For example, 
saturation-F-chemical-smith-2018.csv describes a time trend 
of a saturated flow controller in the chemical industry, the 
contributors surname is Smith and the data was captured in 
2018. If there are several datasets with the same criterion 
these are numbered after the year. 

It is particularly important to note that the authors and project 
participants have screened all the data to be published and 
have verified the root causes. Data trends that are ‘suspected’ 
fault categories are labelled accordingly. The data format in 
the .csv file is described in the next section. In addition to the 
.csv file there is a .txt file with the same filename that 
describes the data in more detail as follows:  
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File: quantisation-F-minerals-bauer-2017.csv 
Type of measurement: Flow 
Industry: Minerals processing 
Data length: 1000 
Sampling rate: 10 seconds 
Company: Anonymous 
Normalised: Yes 
Contributor: Margret Bauer, University of the 
Witwatersrand 
Year of origin: 2017 
First appearance in publication: none 
Description: This is an example of quantisation in 
a flow measurement. The data is normalised using a 
larger data time period. 

Tab. 1 lists the fields of the .txt file and the content with 
examples.  

3.2 Data format of .csv file 

The individual data sets are from single-input single-output 
PID control loops. These loops have three measurements 
which are captured as time series: process variable, desired 
setpoint and the controller output. These three measurements 
are captured as time trends which results in the first recorded 
measurement, the time stamp. Thus, each data set is in the 
form of a .csv file. For each file there are four columns, as 
listed in Tab. 2. 

Table 1.  Information and categories of data set.  

Data 
information 

Values and examples 

Cause of poor 
performance 

Any of the categories listed above 

Type of 
measurement 

Flow, Temperature, Pressure, Level or 
Other 

Industry Chemical, oil & gas including 
petrochemicals, minerals processing, 
paper, power generation, metals 
processing, manufacturing, food and 
beverages, other 

Company The company, which has provided the 
industrial data. If no information is put 
forward the default value is anonymous.  

Normalisation Yes/No. The data may be normalized to 
unit variance and standard deviation to 
protect the anonymity of the data. 

Contributor Name, surname and affiliation if 
available.  

Year of origin 2017 
Appears in 
publication 

Authors, year, title, journal, volume, 
pages 

Tab. 2. Columns of .csv file for each SISO PID control. 

Time Time YYYY-MM-DD hh:mm:ss 

Setpoint SP In same scale as PV 

Process variable PV In same scale as SP 

Controller Output OP Between 0 and 100 

4 FURTHER ADDITIONS 

When discussing the data repository within the research 
community many ideas for other uses of the data repository 
came to mind. For now, the data is strictly limited to 
industrial single-input single-output PID controller data. This 
is done in order to keep the data manageable, clear and 
establish a reputation for consistency and usability. The ideas 
for extensions and additions are captured in this section for 
future development and reference.  

4.1 Plant-wide disturbances 

Disturbances often travel through the connected process 
equipment and affect a number of process variables. The 
process variables then all fluctuate with the same pattern of 
the disturbance and deviate from their setpoints and it 
becomes difficult to identify the root cause. Finding and 
diagnosing the root cause of so called plant-wide disturbance 
is a specialized but important area of CPM. The datasets 
contain a number of measurements in an isolated section of a 
plant. These measurements do not necessarily have to be 
control loops but can be pure sensor data. In fact, for plant-
wide disturbance analysis, only the process variables are 
usually investigated.  

4.2 Industrial model predictive control data 

Model predictive control (MPC) is the control layer on top of 
the PID loops and concerned with a optimizing the setpoints 
for a number of variables in a process. MPC data contains 
process model information – derived from first principles or 
step testing – as well as trajectories and is rich in information. 
The analysis of historical MPC data for performance 
evaluation is more complex than for PID and arguably less 
advanced as a result.  

4.3 Simulated plant data 

Similar to the Tennessee Eastman Process made available by 
Downs and Vogel, there are a number of simulated processes 
that are frequently used for fault detection. This starts with a 
simple continuous stirred tank reactor (CSTR) process and 
sometimes involves complex processes. Making the 
simulated data and the underlying models available to the 
research community provides different insights. 

4.4 Monitoring methods 

Besides sharing data, methods developed by academics can 
be shared on this platform. Many methods are complex and 
can be implemented differently. For example, any method 
that builds on examining the probability density function 
(PDF) from historical data requires a method to estimated the 
PDF. Estimation methods are simple histograms but ideally 
use Kernel functions. The choice of the Kernel function will 
impact – even if slightly – on the estimated PDF and 
therefore on the detection method. As a result, two 
implementations of the very same method will give different 
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results. Using one optimized implementation that is available 
on a platform allows the comparison of different methods on 
different data sets.  

4.5 Evaluation criteria  

Once the methods have been added another consideration is 
to cite a specific dataset and to include a brief summary of 
the performance of the proposed method. Defining 
performance metrics for control monitoring methods (a task 
not yet formally addressed in literature) will further promote 
relevant research. Some aspects that such performance 
metrics should cover: 

• Level of user-input required (qualitative): 
o Whether the method requires user-defined 

parameters, how many parameters are required, and 
how robust performance is for incorrect parameter 
selection; 

o Computational performance (qualitative or 
quantitative): 

• Processing requirements for training and application: 
o Memory requirements for training and application 
o Accuracy and precision (qualitative and 

quantitative); 
• Ability of method to detect and identify control faults 

correctly (robustness).  

5 CONCLUSIONS  

This paper describes a voluntary initiative by academic 
researchers to further the use of data-driven methods for 
control loop performance monitoring. The host institution -
South African Council for Automation and Control (SACAC) 
is a non-profit organisation with the interest of furthering the 
use of new technologies in automation and bridging the gap 
between industry and academia.  

The authors firmly believe that the field of data-driven 
methods for CPM can be greatly enhanced by having 
comparable and standardised data sets that can be used for 
testing. As a result, the authors hope that production 
companies will be increasingly and consistently use CPM 
tools to tackle control loop performance problems. 

As a first step, only SISO PID data of the most common fault 
categories are available on the platform. All colleagues are 
invited to submit their data sets and contribute to the 
discussion. The database is still in the process of being set up 
so there is room to improve, correct and optimize the data 
content and access.  
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