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Abstract: Stepping motors are used in numerous applications because of their low manufac-
turing cost and simple open-loop position control capabilities. The bulk of the widely used
full-step open-loop stepping motor drive algorithms are driven at maximum current to avoid
step loss. This non-optimal way of control leads to low efficiency. In order to use stepping
motors in a more optimal way, closed-loop control is needed. A previously described sensorless
load angle estimation algorithm, solely based on voltage and current measurements, is used to
provide the necessary feedback without using a mechanical position sensor. In this paper, an
adaptive PI controller which optimizes the current level based on the feedback of the estimated
load angle is introduced. Although the current - load angle dynamics are highly non-linear,
an adaptive PI controller with the settling time of the current reduction as design constraint
is worth considering. Especially because few tuning parameters are required. The described
method is complimentary to the popular methodology used to drive a stepper motor, which is
based on step command pulses. Measurements validate the proposed approach.

Keywords: Adaptive and robust control, Applications of PID control, Stepping motor,
Sensorless motor control, Load angle, Fractional horsepower machines

1. INTRODUCTION

The absence of an expensive position sensor makes step-
ping motors very appealing for low-power positioning. The
rotor position of the machine can be controlled by sending
step command pulses. Every time a step command pulse is
sent by the user, the rotor of the machine makes a discrete
rotation. In this way it is easy to control the position
without the explicit feedback of a mechanical position
sensor. The two-phase hybrid stepping motor principle
is illustrated in Fig. 1(a-b). The stator is equipped with
concentrated windings while the multi-toothed rotor is
magnetized by means of axially oriented permanent mag-
nets. The north-stack and south-stack of the rotor each
have a number of rotor teeth and are shifted with a half
tooth pitch relative to each other. By magnetising phase A,
the rotor teeth are attracted by the excited stator phase
(A+ and A−). When a new full-step command pulse is
given, the excitation of one phase is released while the
second phase is excited.

When the motor is overloaded due to too high load torque
or acceleration demands, the relation between the setpoint
and the actual rotor position is lost. In most cases this
step loss will not be noticed by the stepper controller
and will result in malfunctioning of the application. Until
? Research funded by a PhD grant of the Research Foundation
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today, in order to reduce the possibility of step loss in
the current applications, the motor is driven at limited
velocity, maximum current level or is over-dimensioned
(Lu et al. (2016); Orrs et al. (2016)). This means that
the bulk of the stepping motors are driven in a non-
optimal way with a low efficiency as result as illustrated
in Derammelaere et al. (2014b).

The basic open-loop algorithms are unsatisfactory to drive
a stepper motor efficiently. For this purpose, vector-control
algorithms, as used in permanent-magnet synchronous
machines (PMSM) (Seilmeier and Piepenbreier (2014);
Park and Sul (2014)) and induction machines (IM) (Yoon
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Fig. 1. Two-phase hybrid stepping motor with 50 rotor
teeth per stack, front view (a) and cross section (b)
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Fig. 2. Relationship between the motor torque Tem and the load angle δ at constant current level is

(2010); Stojić et al. (2015)), are of interest. The advanced
stepping motor drive algorithms described in Kim et al.
(2011); Le and Jeon (2010) use control loops typical for
PMSM machines. This means that positioning by using
step command pulses is impossible when these methods
are implemented. This hinders the implementation of these
methods in industry.

Therefore in this paper, a closed-loop load angle controller
is proposed. The main added value is in the design of
a control which adapts the stepping motor current level
based on the estimated load angle. A previously described
sensorless load angle estimation algorithm, solely based on
voltage and current measurements, is used to provide the
necessary feedback without using a mechanical position
sensor. An important advantage of this approach is the
fact that optimal performance can be obtained without
changing the control architecture for the stepping motor
user. The latter means that the user can still control the
position by sending and counting step command pulses
while the adaptive PI control introduced in this paper
continuously optimises the current level. Although, the
current - load angle dynamics are highly non-linear, an
adaptive PI controller with the settling time of the current
reduction as design constraint is worth considering. Espe-
cially because few tuning parameters and no mechanical
parameters are required compared to Derammelaere et al.
(2017).

2. LOAD ANGLE

The equation describing the electromagnetic motor torque
is essential to have the necessary understanding in the
stepping motor drive principle. The electromagnetic motor
torque can be quantified based on the interaction between
the stator flux linkage space vector Ψs and the stator
current space vector is (Lin and Zheng (2006)).

Tem = Ψs × is (1)

By neglecting saturation and splitting up the stator flux
linkage to a dq-reference frame (Fig. 2) which is fixed to
the rotor flux, the electromagnetic torque can be written
as with Ld and Lq respectively the direct and quadrature
inductance:

Tem = (Ψr + id.Ld + iq.Lq) × is (2)

Elaboration of the vector products leads to an equation
describing the electromagnetic torque as a function of is

and the load angle δ, defined as the angle between is and
the rotor flux Ψr (Fig. 2):

Tem = ψr.is.sin (δ) +
Ld − Lq

2
.i2s.sin (2δ) (3)

The first term in (3) describes the torque generated by the
interaction between the permanent magnet rotor flux Ψr

and the stator current is. This term depends on the sine
of the load angle δ. Because of the multi-toothed rotor
and stator construction of a hybrid stepping motor, the
reluctance effect will increase the maximal electromagnetic
torque. This reluctance effect is represented by the second
term in (3) and varies sinusoidally with twice the load
angle δ.

Fig. 2 shows the relationship between the motor torque
Tem (reluctance torque excluded) and the load angle δ at
constant current level is. If the current level is constant,
the generated motor torque becomes bigger when the load
angle increases. The higher the load angle the more energy
efficient the machine is used. When the load angle exceeds
the optimum π

2 , the generated motor torque decreases and
step loss occurs.

2.1 Load angle estimation

The load angle δ reflects the capability of the stepping
motor system to follow the position setpoint and is there-
fore interesting to estimate. The load angle δ is the angle
between the current vector is and the rotor flux vector
Ψr and thus equals to β - θ (Fig. 2). Unless an encoder is
used, the location θ of the rotor flux vector Ψr is unknown.
Therefore to estimate the load angle, the back-EMF is
considered. Based on Lenzs law the resultant back-EMF
vector es induced in the stator windings by the rotor flux
Ψr can be written as:

es =C
dΨr

dt
(4)

As a result, es leads Ψr by π
2 . Therefore, the load angle

can be redefined as:

δ =
π

2
− (6 es − 6 is) (5)

In the previous equation, the location of the current and
the back-EMF vectors 6 is and 6 es are unknown. Because
the phase current can be measured easily, the problem
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of estimating the load angle is reduced to a problem of
estimating the position of the back-EMF. The back-EMF
can be estimated based on the voltage equation of the
stator windings. There is no interaction between the two
phases because they are perpendicular to each other and
constant inductance is assumed (Bendjedia et al. (2012)).
Therefore, the mutual inductance is neglected and the
back-EMF can be written as:

es(t) = us(t) −Rs.is(t) − Ls
dis
dt

(6)

The derivative in eq. (6) will cause problems if the measu-
red current contains noise. Determining the derivative of
noisy signals would result in distorted estimations. The-
refore Derammelaere et al. (2014a) suggests to write (6)
in the frequency domain, where ω represents the signal
pulsation:

Es(jω) = Us(jω) +RsIs(jω) + jω.LsIs(jω) (7)

According to this method, only electrical parameters such
as the stator resistance and inductance and the complex
representation of the easily measurable phase current and
voltage are needed to estimate the load angle. In stepping
motor applications the position and speed setpoints are
determined by step command pulses sent by the user as
long as no step loss occurs. This means that the position
and speed are always known and consequently also the
instantaneous signal pulsation ω is known. The complex
components Ua(jω) and Ia(jω) of the measured voltage and
current signals are determined via transformation of the
signals from the time to the frequency domain. De Viaene
et al. (2017) described an estimator based on Phase Locked
Loop which is able to determine the complex components
even during speed transients.

3. LOAD ANGLE CONTROLLER

The large majority of the stepping motors in industry are
driven in open-loop using a full, half or micro-stepping
algorithm. These algorithms impose a stator current vector
is. In these typical stepping motor drives, the angular
position of the stator current vector is determined by step
command pulses. Many commercial stepping motor drives
also allow to adjust the current vector amplitude, labelled
is in Fig. 3. Based on is and the step command pulses sent
by the user, the transformation to the two-phase system
is made and the current controller injects the desired two-
phase currents in the motor. By doing so, the position of
the rotor can be controlled in open-loop. The advantage
of this method is that the position of the rotor can be
directly imposed. The disadvantage is that the position
of the permanent rotor flux Ψr has not been taken into
account to inject the two phase currents in order to achieve
optimal torque generation.

In Derammelaere et al. (2017), a closed-loop load angle
controller is suggested which is complementary to the
typical stepping motor drives. This PI controller only
adjusts the current level to obtain the desired load angle to
reach the optimal torque/current ratio. In other words, the
controller determines the amplitude of the stator current
vector while the position of this vector is determined by

step commands. The current is reduced from the nominal
level to the minimum current necessary to drive the motor
at a specific speed and load torque setpoint. Information
of the load angle is used to control a stepping motor
in an energy-efficient way. This approach is challenging
as the current - load angle dynamics are highly non-
linear. Therefore, Derammelaere et al. (2017) presented
a linearized model. In this way, the linear theory in s-
domain can be used to tune a PI load angle controller. As
an outcome, both Kp and Ti depend on the mechanical
damping b, the inertia J , the torque constant CT, the
setpoint load angle δ∗, the damping factor ζ and the load
angle δimax at maximum current level. The last one is easy
to determine because Derammelaere et al. (2017) proposed
to start the stepper motor operation at maximum current
Imax for every new speed setpoint. The damping factor ζ
is used as design parameter of the closed loop system. The
settings of Kp and Ti are visualized in Table 1.

Table 1. Settings of the PI controller based on
linearized dynamics

Kp −

J.

−b−

√
b2 − 4JCT .Imax.

sin(δimax )

tan(δ∗)

2.CT .Imax.
sin(δimax )

tan(δ∗)


2

4.ζ2.CT .sin(δ∗)

Ti

2.CT .Imax.
sin(δimax )

tan(δ∗)

−b+

√
b2 − 4JCT .Imax.

sin(δimax )

tan(δ∗)

The time responses of the load angle controller strongly
depend on the setting of the damping factor ζ but the main
drawback of the method described in Derammelaere et al.
(2017) is that the system parameters need to be known.
Therefore in this paper, a simpler design procedure of the
PI settings requiring less settings of the user is proposed.
A novel procedure for finding the PI settings based on the
current reduction time is described in the next section.

3.1 Adaptive PI controller based on current reduction time

The typical PI controller can be written by the following
transfert fuction:

Kp

(
s+ 1/Ti

s

)
(8)

The I-action will integrate the difference between the

setpoint δ∗ and the estimated load angle δ̂. In this way, the
integrator can reduce the current from maximum current
level Imax to the current level Irequired at which the setpoint
load angle is achieved.

Kp

Ti

∫
(δ∗ − δ̂) dt = Imax − Irequired (9)

To determine the parameters Kp en Ti in a simple way,
the assumption is made that the PI controller will reduce
the current level in such a way that the error will decrease
linearly as illustrated in Fig. 4. The linearly increase of the
load angle δ in Fig. 5, which shows the controlled current
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Fig. 3. Typical stepper motor drive principle where current vector is position β is determined by step command NXT
pulses sent by the user extended with adaptive PI load angle controller

reduction and load angle optimisation using PI settings
based on linearized process dynamics (Table 1), indicates
that this assumption is justifiable.

The time required to reduce the current level Imax to
Irequired is defined as the design constraint Ta. Because of

the simplified representation of the error reduction δ∗ − δ̂
as illustated in Fig. 4, eq (9) can be written as the area
indicated by the triangle.

Kp

Ti

1

2
(δ∗ − δimax

)Ta = Imax − Irequired (10)

In this way, the ratio of Kp over Ti is given by:

Kp

Ti
=

Imax − Irequired
0, 5 (δ∗ − δimax

)Ta
(11)

The time Ta required to reduce the current to the requi-
red current level is the design constraint. The maximum
current level Imax, the setpoint load angle δ∗ are known.
The load angle δimax at maximum current level can be
measured. The current level Irequired, at which the setpoint
load angle is achieved, has to be calculated. For this, the
motor operation is considered at steady-state at which the
motor is loaded with a certain torque Tload at a certain
speed ω.

To calculate Irequired, the linear torque-load angle relation
of (3) is used:

δ∗−δ̂

t

current reduction time

Ta

initial error

δ∗−δimax

Fig. 4. Expected linearly decrease of the error between δ∗

and δ̂

1 2 3 40

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

# Rotor rotations

Lo
ad

 a
ng

le
 [r

ad
]

n*=375tr/min,  Tload=0.33Nm, δ *=0.9rad, ζ=2

1 2 3 4

Load angle
Current level

Imax

Irequired

δi max

δ*

A.(Imax-Irequired)

0

1

2

3

4

5

C
ur

re
nt

 [A
]

Fig. 5. Controlled current reduction and load angle opti-
mization at specific operation point and PI settings
based on linearized process dynamics

CT .i.δ = bω + Tlast (12)

The product of δimax
and Imax results in a ratio which

contains information about the load and the machine:

Imax.δimax
=
b.ω + Tlast

CT
(13)

The left-hand part of (13) is constant for a given load and
speed, so the required current Irequired at the setpoint load
angle δ∗ can be determined by equating the right-hand
sights of (13) and (14).

Irequired.δ
∗ =

b.ω + Tlast
CT

(14)

In this way, (11) can be rewritten as:

Kp

Ti
=

Imax −
(
Imax.

δimax

δ∗

)
0, 5 (δ∗ − δimax

)Ta
(15)
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Based on the linear representation of the torque-load angle
relation (12), this can simplified:

Kp

Ti
=

Imax

0, 5.δ∗.Ta
(16)

Simulation results obtained by tuning the PI controller
based on the linearized dynamics (Table 1) are useful
to find the setting of the current reduction time Ta.
Table 2 summarizes the time response and the required
rotor rotations rotor to control the load angle at different
operating points.

Table 2. Time response PI controller based on
linearized dynamics

Speed [rpm]: 75 75 375 500 500
Load torque [Nm] 0 0,49 0,33 0 0,49

δimax [rad] 0,06 0,24 0,31 0,55 0,83
δ∗ [rad] 0,20 0,67 0,80 1,05 1,18

# rotor rotations 0,5 0,4 1,9 3,1 3,3
Settling time [s] 0,4 0,32 0,30 0,37 0,4

Part A of Kp on reduction 0,1 0,11 0,1 0,21 0,38

These results show that a minimum of 0,4 rotor rotations
is required to control the load angle. This limit is assumed
as design constraint whereby the current reduction time
Ta can be written with n the motor speed as:

Ta = 0, 4
60

n
(17)

On the one hand, the I-action is responsible for the current
reduction. On the other hand, the P-action is responsible
to react on sudden changes in the load angle so that
the current level can be adjusted sufficiently fast. When
the P-action has to reduce instantaneously the maximum
current level Imax until the required current level Irequired
is reached, Kp can be written as:

Kp =
Imax − Irequired
δ∗ − δimax

(18)

Also this equation can be simplified in an analogue way as
(16) is simplified:

Kp =
Imax

δ∗
(19)

It is not realistic to expect that the P-action completely
guarantees the reduction of the current level taking in
mind the dynamics of the system and the estimator.
Therefore, the parameter A is presented which indicates
the part of the proportional gain Kp leading to the current
reduction. The factor A is also illustrated in Fig. 5. Kp can
then be calculated as follows:

Kp = A.
Imax

δ∗
(20)

A too large A leads to a too large gain factor Kp which
results in an unstable system. In order to find out how
large the fraction A of the P-action may be, the fraction is
calculated when the previous settings (Table 1) based on
the linearized process dynamics are used. Table 2 shows
that the maximum fraction of the P-action on the current
reduction may not exceed 10 % if a reduction period of
0,4 rotor rotations is desired. Table 3 summarizes the

settings of the PI controller based on the current reduction
time which are much simpler than settings based on the
linearized dynamics summarized in Table 1. The damping
b, the inertia J , the torque constant CT, the load angle
δimax at maximum current level and the damping factor
ζ are no longer required. In this paper, an adaptive PI
controller is obtained (Fig. 3) which adjusts Kp and Ti in
function of the motor speed n∗, the setpoint load angle δ∗

and the maximum current level Imax.

Table 3. Settings of the PI controller based on
the current reduction time

Kp −A.
Imax

δ∗
for Aopt = 0, 1

Ti −0, 5.A.Ta for Taopt = 0, 4.n

4. MEASUREMENTS

The presented design procedure is used to measure the
load angle optimisation at unload, half and fully loaded
motor operation. In this way, Figures 6, 7 and 8 are
obtained.
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Fig. 6. Controlled current reduction and load angle opti-
misation at low speed and unloaded
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Fig. 7. Controlled current reduction and load angle opti-
misation at half loaded motor operation
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Fig. 8. Controlled current reduction and load angle opti-
misation at high speed and fully loaded motor

By presenting the Figures as a function of the rotor
rotations, it is clear that the current reduction in Figs. 6-8
always follows the same pattern. A current reduction of
65, 13 and 6 % of the nominal current level is achieved
respectively at unloaded, half and fully loaded motor
operation if Imax is 2.4 A. The time response of the
controller satisfies the design constraint because the load
angle reaches the setpoint load angle each time after
approximately 0.4 rotor revolutions.

5. CONCLUSION

The bulk of the stepping motor applications are driven in
open loop, with maximum current to avoid step loss. These
drive strategies result in very poor energy efficiency. In
order to use stepping motors in a more optimal way, closed-
loop control is needed. A previously described sensorless
load angle estimation algorithm, solely based on voltage
and current measurements, is used to provide the neces-
sary feedback without using a mechanical position sensor.
The load angle determines the torque/current ratio of the
stepper motor drive.

The contribution of this paper is in the design of a control
which adapts the stepping motor current level based
on the estimated load angle. An important advantage
is the fact that optimal performance can be obtained
without changing the control architecture for the stepping
motor user. The design method to achieve the optimal PI
settings does not use the transfer function which describes
the process dynamics. A novel more simple procedure
for finding the PI settings is described. An adaptive PI
controller is obtained which adjusts Kp and Ti in function
of the motor speed, the setpoint load angle and the
maximum current level. Measurements prove that this
method satisfies the design constraint. The load angle
setpoint is obtained in 0,4 rotor rotations at different
motor operating points. The controller is able to reduce
the current level up to 65 % of the nominal current level
at low speed and no load.
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