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Abstract: Conventional PID controllers have been a practical solution when controlling linear processes 

but its response is degraded considerably in strongly nonlinear processes. Fuzzy control presents an 

improvement in the response because its nonlinear nature. However, there is no absolute tuning 

methodology, with solutions ranging from trial and error to sophisticated computational methods. In this 

paper, we present a simple but effective systematic approach for the tuning of several direct fuzzy PID 

controllers, based on the calculation of static gains of linear sub-models and controller scaling factors. 

The proposed methodology was successfully tested in a nonlinear process model and a CSTR model. 
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1. INTRODUCTION 

In control of continuous processes, it is desired to impose a 

behaviour in the response of the system and maintain it in 

such behaviour despite the disturbances. The most popular 

controller used in the industry is the Proportional-Integral-

Derivative (PID) because its performance in linear processes 

(Blevins, 2012), (Vilanova & Alfaro, 2011). For this 

controller different architectures and parameter adjustment 

methods (tuning) have been proposed (O'Dwyer, 2003), 

including empirical and analytical model-based approaches. 

In this case, tuning rules are proposed relating the controller 

parameters with the process model parameters, allowing a 

systematic adjustment. Historically, the well-known approach 

under this perspective was presented in (Ziegler and Nichols, 

1942). During several decades a lot of tuning methods have 

been proposed. The extensive information in the literature 

and events worldwide about the evolution of the PID 

controller, for instance, the IFAC PID Workshop Present and 

Future of PID, indicates that it continues to be a trend in both 

the industrial and academic fields. 

Although there are several methods of adjustment of the PID 

controllers and their extensive use, conventional PID 

controllers show performance degradation frequently, due to 

changes in operation points showing non-linear behaviour, 

even with an adequate tuning of the controller parameters at 

the point of operation of the process (Viljamaa and Koivo, 

1995). Trying to solve these difficulties, the use of non-linear 

control systems that can provide a better performance 

compared with the conventional PID arises as an alternative. 

Fuzzy control has been used in the industry with success in 

the last two decades (Guerra et al., 2015), (Precup and 

Hellendoorn, 2011) in control tasks of non-linear behaviours. 

As in conventional PID, the essential principle of operation is 

based on the calculation of the corrective action from the 

behaviour of the error. Many works show alternative ways to 

treat aspects of nonlinearity in the behaviour of processes 

(Diaz-Salgado et al., 2012). However the fuzzy approach can 

provide a simple strategy maintaining the classic PID 

structure through a soft switching of controller gains. 

Several architectures for fuzzy logic control (FLC) have been 

proposed (Mann et al., 1999) such as direct, supervisory and 

hybrid. In the case of the direct fuzzy control, the fuzzy PID 

controller is within the feedback control loop, acting directly 

over the process. Another architecture is supervisory fuzzy 

PID, where the fuzzy controller acts as a gain scheduling 

supervisor of a conventional PID controller. Additionally, in 

the hybrid architecture the control actions are a parallel 

combination of a FLC and a conventional PID. 

Regardless of the architecture used, the FLCs show 

advantages such as adaptation capacity to control non-linear 

processes, flexibility of implementation and no strict-

mathematical model required (Babuska, 2009). One 

disadvantage of the FLCs design and tuning is that methods 

are not general enough, they have not been broadly detailed 

and there is still room for more systematic approaches. 

Therefore, trial and error procedures are frequently required 

through simulations by computational systems or process 

tests. This caused by the huge number of parameters or 

aspects to be modified in the FLC controller, including rule 

base and membership functions, among others (Hu et al., 

2001), (Mann et al., 1999). In order to obtain a better 

performance to solve the tuning problem, techniques from 

computational intelligence like genetic algorithms (Lin and 

Xu, 2006) and artificial neural networks (Hímer et al., 2005) 

have been used. These methods employ objective functions to 

solve an optimization problem, which usually implies a 
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complex mathematical treatment and in some cases 

convergence problems and a high computational cost. 

In the industry and within the engineering practice is not 

typical the availability of a rigorous mathematical 

representation describing the behaviour of the process; hence 

simple models are more common, and developing of tuning 

methods with the minimum information of the process is 

desirable, in order to obtain the controller parameters in a 

simple way. In this work, a methodological approach of a 

family of direct FLC tuning is proposed, obtaining the 

appropriate input and output scaling factors of the fuzzy 

system. These gains influence the performance and stability 

of the system in the same way as the gains of a conventional 

PID. An inadequate choice leads to excessive oscillations, 

over-damping and instability. The appropriate calculation of 

the scale factors is obtained from the dynamic response of the 

process to be controlled, through expressions allowing the 

establishment of a simple and systematic procedure, reducing 

the necessary time in the tuning of the FLC. 

This article is organized as follows: section 2 introduces 

different architectures of direct FLC PID controllers, section 

3 presents the methodological approach for the tuning of the 

considered fuzzy PID controllers; section 4 reveals the 

analysis of results through simulations applied to two 

nonlinear systems, and finally section 5 presents conclusions 

and recommendations for future work. 

2. DIRECT FLC ARCHITECTURES 

Direct architecture FLCs are used in many applications 

(Mann et al., 1999), for which the control surface can be 

modified by changes in the following elements: rule base, 

shape of membership functions (MFs), location in the 

discourse universes, selection of the fuzzy inference system 

and defuzzification method. As a consequence, the non-linear 

mapping of the inputs and the output is changed. Another 

way to modify the nonlinearity of the FLC is through the 

scaling factors, which allow the MFs both for inputs and 

output to be modified in the discourse universes, allowing the 

modification of the controller's time response. 

2.1 FPD+I Architecture 

The architecture fuzzy proportional-derivative-plus-integral 

(FPD+I) proposed in (Jantzen, 1998) uses the error (e) and 

the derivative of the error (Δe) as inputs to the FLC, and 

output control action (u). In the inputs, a dynamic pre-

filtering is carried out to obtain Δe and/or ∫e by means of 

linear filters. In addition, the signals are normalized in an 

operating range [-1, 1]. In the output, a dynamic post-filtering 

is performed to normalize the signal to [0, 100]. 

By selecting the scale factors and the standard parameters 

defined in figure 1, a linear control surface is generated, 

allowing an equivalence with the response of a conventional 

PID controller of ideal architecture. In the construction of the 

rule base, the inputs e and Δe are considered, in order to 

correct the steady-state error in the response, and the integral 

of the error is added to the output of the fuzzy system by an 

escalation factor. 

  

 

  

Fig. 1. a) MFs for the inputs e, ∆e, b) MF for the output u,      

c) Rule base, d) Control surface. 

Therefore, the architecture of the FLC is shown in figure 2: 

 

Fig. 2. Architecture of an FPD + I controller 

The control action of an ideal PID is defined as: 
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The control action produced by the FLC is: 

 ieGIEceGCEeGEGUU                         (2) 

By comparing the control actions (1) and (2), the expressions 

for the scaling factors are as follows: 

100GE                           (3) 

GEkGU
p

                                                      (4) 

GETGCE
d
                                                                      (5) 

i
TGEGIE                                                            (6) 

2.2 MHPID Architecture 

The architecture modified hybrid proportional-integral-

derivative (MHPID) proposed in (Escamilla, 2002), uses as 

inputs of the FLC the e and Δe and as output u. It is also 

necessary a dynamical pre-filtering and dynamic post-

filtering. To obtain a linear control surface that will allow 

finding the values of the scale factors, the following base of 

rules and membership functions for the inputs will be used: 
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Fig. 3. a) MFs for the inputs e, ∆e, b) Control surface, c) Rule 

base. 

This architecture is constructed from the sum of the 

contributions of a FLC-PD and a FLC-PI. The same rule base 

is used for the two controllers, then the control action 

produced by the FLC is defined as:
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Fig. 4. Architecture of an MHPID controller 

To obtain the equivalence with its linear counterpart, the 

comparison of the control action is made with a PID of 2 

degrees of freedom with a weighting of the reference and 

derived on the output, as follows: 
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Comparing (7), (8) and establishing a relation Td/Ti = ¼, the 

scaling gains are obtained: 

1GE                                                                                 (9) 

d
TGCE  2                                                                        (10) 
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3. TUNING METHODOLOGY 

The proposed tuning methodology for FPD+I and MHPID 

controllers consists of: 

 Identification and modeling of the process 

 Calculation of scale factors of FLC through 

conventional PID gains 

 Fine-tuning of scale factors of the FLC through a Kf 

parameter, related to the static gains of the linear 

sub-models in the different points of operation. 

3.1 Analyze the Behaviour of the Plant 

For identification and modelling purposes, it consists in the 

understanding of the behaviour of the closed-loop system, 

especially the way it reacts to changes in the input. In 

particular, in this work two frequent cases of the presence of 

non-linearities in industrial applications of process have been 

considered, while varying the reference (increasing the set 

point) in different points of operation of the process: 

i) The response of the system takes more time to 

reach the set point. 

ii) The response of the system presents an 

overshoot that increases. 

3.2 Obtain the approximate mathematical representation of 

the Plant 

The adjustment of the fuzzy PID controller in the 

architectures considered requires a minimum knowledge of 

the system to be controlled. In the industrial environment, 

identification methods are used to approximate the behaviour 

of linear sub-models, commonly for first or second order 

models plus dead time. In this paper, we propose a simple but 

effective adjustment for the fuzzy PID controller, based on 

the calculation of a coefficient called Kf that is related to the 

static gains of the linear sub-models in the different points of 

operation. As the reference changes in the process and 

considering self-regulated processes such as those described 

in the previous step, the static gains are determined in the 

different points of operation and between these, the lower 

Klower and upper Kupper values are chosen. Kf coefficient 

relating the static gains of the linear sub-models is 

determined as follows: 

upperlowerf
KKK                                           (13) 

3.3 Obtaining Fuzzy Scale Gains 

Transfer the gains of the linear PID controller (differentiating 

its architecture: ideal, series and parallel) that is in operation, 

to the Fuzzy PID controller by means of the conversion 

equations proposed in (Jantzen, 1998) and (Escamilla, 2002), 

through a linear control surface. 

3.4 Tuning 

Modify the scaling gains according to the Kf parameter. After 

defining the architecture of the fuzzy controller and obtaining 

an approximate performance with its linear counterpart, the 

new gains must be found by: 

Jantzen´s FPD+I: 

fn
KGUGU                            (14) 

5.0
n

GCEGCE           (15) 

n
GIEGIE                            (16) 
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Escamilla´s MHPID:  

n
GEGE                                                                            (17) 

n
GCEGCE                                                                      (18) 

fn
KGUGU 4                                                             (19) 

fn
KGCUGCU                                                            (20) 

For the equations from (14) to (20), the subscript n refers to 

the nominal value, that is to say, the value found with the 

conversion equations (3) to (6) for Jantzen and (9) to (12) for 

Escamilla. These sets of equations were obtained seeking to 

develop a practical but effective tuning method applicable to 

an industrial level, modifying the least amount of scaling 

factors. The determination of such values is supported by the 

performance of numerous computational tests taking into 

account measurements of performance indices and temporal 

response of the system. 

The windup treatment in the fuzzy controller architectures is 

performed through a feedback gain to re-calculate the integral 

term (Astrom and Hagglund, 1995). In the following section, 

two case studies have been considered to validate the 

experimental results of the proposed methodology. 

4. EXPERIMENTAL RESULTS 

To evaluate the performance of the direct FLC controllers 

proposed in the previous section, simulations were 

implemented in the Matlab software, using tools such as 

Simulink and fuzzy logic toolbox. The tested processes are 

non-linear models, the first model was extracted from 

(Viljamaa and Koivo, 1995), for the second case the Matlab 

CSTR model was used. The objective is to perform tasks of 

reference tracking and rejection of disturbances. To analyze 

the behaviour of the controllers, the following measurement 

criteria were used: Integral of the absolute error (IAE) and 

Integral of the time by the absolute error (ITAE). For each 

process, a PID linear controller was tuned under the internal 

model control (IMC) technique (Morari, 1989) and its 

response was compared with the direct FLC, obtaining a 

better performance of the FLC in the presence of non-

linearities This behaviour against changes in the reference 

can be seen later in figures 7 and 11. 

1) Non-Linear Model 
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The range of work for this system was chosen from 0 to 1 in 

incremental steps of reference of magnitude 0.1. The 

dynamic response of the process to step inputs allowed the 

characterization as second-order models. In the lower and 

upper operating points, the transfer functions obtained are: 

6981.06992.0

737.4
2




ss
G

l
                                             (22) 

58.4879.0

2656.0
2




ss
G

u
                                          (23) 

Therefore, the corresponding lower and upper static gains are 

Kl =6.786, Ku =0.0580. From these values and applying 

equation (13) for the case is obtained Kf = 117. 

Figure 5 shows the reaction curve of the process due to step 

inputs. 

 

Fig. 5. System reaction curve. 

Figure 6 shows the temporary response of controllers 

introducing a step type disturbance at t = 30 s and Gaussian 

noise 10 times higher the bandwidth of the plant. The 

numerical evaluation of the time response and performance 

indices is presented in table 1. 

 

Fig. 6. Time response of controllers. 

Table 1. Performance measurements. 

 Without disturbance t = 60 s Disturbance 

Controllers Mp (%) Tr (s) Ts(s) IAE ITAE IAE ITAE 

PID-IMC 36.6 3.01 20.19 1.56 12.24 1.88 23.48 

FPD+I 22.85 1.19 8.9 0.55 5.96 0.55 6.04 

MHPID --- --- 17.23 1.20 5.10 1.19 5 

 

In Figure 7 the response of the PID IMC presents an impulse 

in the lower part and degradation in the upper part while the 

PID FLCs present a more consistent temporal performance. 

This is shown in Table 2, obtaining an improvement in the 

Integral of the Time-weighted Absolute value of the Error 

(ITAE) performance index for FPD+I of 90.9% and for 

MHPID of 74.3%. 
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Fig. 7. Time response to variations of the reference. 

Table 2. Measurement of performance indices 

Controllers PID IMC FPD+I MHPID 

IAE 8.3 1.15 3.15 

ITAE 2168 195.2 556.1 

 

2) Non-Linear Plant 

A model of a continuously stirred tank reactor (CSTR) was 

chosen. The reactor converts a chemical matter A to a 

chemical matter B through an irreversible exothermic 

reaction of first order A → B, the phenomenological model 

consists of 2 non-linear differential equations (Bequette, 

1998). The reactor has three inputs: u1, u2, u3 and two 

outputs: y1, y2, as describes in figure 8. The control objective 

is maintaining the reactor temperature y2(t) in a desired 

reference point in a way that maximize the transformation of 

the chemical matter A, by regulating the temperature of the 

coolant in the jacket (u3), the manipulated variable. 

 

Fig. 8. CSTR reactor. Modified from (Bequette, 1998) 

The working range for this system was chosen from 300 K to 

350 K in incremental reference steps of magnitude 10 K. The 

dynamic response of the process to step input allowed the 

characterization as first order models plus dead time. In the 

lower and upper operating points, the transfer functions 

obtained are: 

1484.2
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Therefore, the corresponding lower and upper static gains are 

Kl =1.27, Ku =0.47. From these values and applying equation 

(13) is obtained for the case Kf = 2.70 

Figure 9 shows the reaction curve of the process due to step 

inputs. 

 

Fig. 9. System reaction curve. 

Figure 10 shows the time response of controllers introducing 

a step type disturbance at t = 11 s and Gaussian noise 10 

times higher the bandwidth of the plant. The numerical 

evaluation of the time response and performance indexes are 

presented in table 3. 

 

Fig. 10. Time response of controllers. 

 

Fig. 11. Control action with the presence of noise 

Table 3. Performance measurements 

 Without disturbance t = 20 s Disturbance 

Controllers Mp % Tr (s) Ts (s) IAE ITAE IAE ITAE 

PID-IMC 30.8 0.47 2.77 56.2 247.8 75.92 490.9 

FPD+I 12.8 0.22 1.3 23.48 123.2 29.64 198.4 

MHPID 2.4 0.15 0.95 16.82 87.13 22.93 168 

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

661



 

 

     

 

Fig. 12. Time response of controllers to variations of the 

reference. 

In Figure 12, the response of the PID IMC shows an increase 

in the oscillations with the variation of the SP, while the FLC 

managed to reduce the overshoot and the oscillations of low 

amplitude. This is shown in Table 4, obtaining an 

improvement in the ITAE performance index for the FPD+I 

of 59.6% and for MHPID of 69.9%. 

Table 4. Measurement of performance indices 

Controllers PID IMC FPD+I MHPID 

IAE 48.75 18.74 16.29 

ITAE 614 247.8 184.6 

 

From tables 1 and 3 it can be seen that, when introducing 

disturbances to closed loop systems, FLCs correct the value 

of the process variable more quickly and smoothly than linear 

PIDs. 

From Tables 2 and 4 it can be deduced that the FPLC FPD+I 

present better performance indexes in non-linear processes 

where the SP is increased, and the response of the system 

becomes slower, while the MHLC FLC presents better 

performance indexes for non-linear processes where the set 

point is increased, and the response of the system becomes 

oscillatory. 

5. CONCLUSIONS 

A new simple but effective methodology for tuning of direct 

fuzzy PID controllers based on the FPD+I and MHPID 

architectures was proposed. The tuning equations obtained 

are function of the scaling factors and the values of the static 

gains found in the upper and lower operating points in the 

process, obtaining a performance improvement, 

comparatively with the linear PID or fuzzy linear equivalents. 

The proposed tuning methodology for direct fuzzy PIDs is 

effective, illustrated by the two specific cases of the 

processes considered, without having to adjust the parameters 

that modify the control surface in fuzzy systems. The 

proposal allows its practical application in industrial 

processes obtaining a considerable reduction in the tuning 

time and improving the performance for processes with 

multiple changes in operating points. As future work, it is 

considered the implementation in industrial platforms and the 

extension of the applicability to processes with more complex 

dynamics, as well as the study of stability and robustness. 
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